484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGEMM
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       COMPLEX*16 ALPHA,BETA
 | 
						|
*       INTEGER K,LDA,LDB,LDC,M,N
 | 
						|
*       CHARACTER TRANSA,TRANSB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGEMM  performs one of the matrix-matrix operations
 | 
						|
*>
 | 
						|
*>    C := alpha*op( A )*op( B ) + beta*C,
 | 
						|
*>
 | 
						|
*> where  op( X ) is one of
 | 
						|
*>
 | 
						|
*>    op( X ) = X   or   op( X ) = X**T   or   op( X ) = X**H,
 | 
						|
*>
 | 
						|
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
 | 
						|
*> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANSA
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSA is CHARACTER*1
 | 
						|
*>           On entry, TRANSA specifies the form of op( A ) to be used in
 | 
						|
*>           the matrix multiplication as follows:
 | 
						|
*>
 | 
						|
*>              TRANSA = 'N' or 'n',  op( A ) = A.
 | 
						|
*>
 | 
						|
*>              TRANSA = 'T' or 't',  op( A ) = A**T.
 | 
						|
*>
 | 
						|
*>              TRANSA = 'C' or 'c',  op( A ) = A**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANSB
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSB is CHARACTER*1
 | 
						|
*>           On entry, TRANSB specifies the form of op( B ) to be used in
 | 
						|
*>           the matrix multiplication as follows:
 | 
						|
*>
 | 
						|
*>              TRANSB = 'N' or 'n',  op( B ) = B.
 | 
						|
*>
 | 
						|
*>              TRANSB = 'T' or 't',  op( B ) = B**T.
 | 
						|
*>
 | 
						|
*>              TRANSB = 'C' or 'c',  op( B ) = B**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>           On entry,  M  specifies  the number  of rows  of the  matrix
 | 
						|
*>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry,  N  specifies the number  of columns of the matrix
 | 
						|
*>           op( B ) and the number of columns of the matrix C. N must be
 | 
						|
*>           at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>           On entry,  K  specifies  the number of columns of the matrix
 | 
						|
*>           op( A ) and the number of rows of the matrix op( B ). K must
 | 
						|
*>           be at least  zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX*16
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
 | 
						|
*>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
 | 
						|
*>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
 | 
						|
*>           part of the array  A  must contain the matrix  A,  otherwise
 | 
						|
*>           the leading  k by m  part of the array  A  must contain  the
 | 
						|
*>           matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
 | 
						|
*>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 | 
						|
*>           least  max( 1, k ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is
 | 
						|
*>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
 | 
						|
*>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
 | 
						|
*>           part of the array  B  must contain the matrix  B,  otherwise
 | 
						|
*>           the leading  n by k  part of the array  B  must contain  the
 | 
						|
*>           matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>           On entry, LDB specifies the first dimension of B as declared
 | 
						|
*>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
 | 
						|
*>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
 | 
						|
*>           least  max( 1, n ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is COMPLEX*16
 | 
						|
*>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
 | 
						|
*>           supplied as zero then C need not be set on input.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array, dimension ( LDC, N )
 | 
						|
*>           Before entry, the leading  m by n  part of the array  C must
 | 
						|
*>           contain the matrix  C,  except when  beta  is zero, in which
 | 
						|
*>           case C need not be set on entry.
 | 
						|
*>           On exit, the array  C  is overwritten by the  m by n  matrix
 | 
						|
*>           ( alpha*op( A )*op( B ) + beta*C ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>           On entry, LDC specifies the first dimension of C as declared
 | 
						|
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | 
						|
*>           max( 1, m ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complex16_blas_level3
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 3 Blas routine.
 | 
						|
*>
 | 
						|
*>  -- Written on 8-February-1989.
 | 
						|
*>     Jack Dongarra, Argonne National Laboratory.
 | 
						|
*>     Iain Duff, AERE Harwell.
 | 
						|
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | 
						|
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level3 routine (version 3.7.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      COMPLEX*16 ALPHA,BETA
 | 
						|
      INTEGER K,LDA,LDB,LDC,M,N
 | 
						|
      CHARACTER TRANSA,TRANSB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC DCONJG,MAX
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX*16 TEMP
 | 
						|
      INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
 | 
						|
      LOGICAL CONJA,CONJB,NOTA,NOTB
 | 
						|
*     ..
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16 ONE
 | 
						|
      PARAMETER (ONE= (1.0D+0,0.0D+0))
 | 
						|
      COMPLEX*16 ZERO
 | 
						|
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
 | 
						|
*     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
 | 
						|
*     B  respectively are to be  transposed but  not conjugated  and set
 | 
						|
*     NROWA, NCOLA and  NROWB  as the number of rows and  columns  of  A
 | 
						|
*     and the number of rows of  B  respectively.
 | 
						|
*
 | 
						|
      NOTA = LSAME(TRANSA,'N')
 | 
						|
      NOTB = LSAME(TRANSB,'N')
 | 
						|
      CONJA = LSAME(TRANSA,'C')
 | 
						|
      CONJB = LSAME(TRANSB,'C')
 | 
						|
      IF (NOTA) THEN
 | 
						|
          NROWA = M
 | 
						|
          NCOLA = K
 | 
						|
      ELSE
 | 
						|
          NROWA = K
 | 
						|
          NCOLA = M
 | 
						|
      END IF
 | 
						|
      IF (NOTB) THEN
 | 
						|
          NROWB = K
 | 
						|
      ELSE
 | 
						|
          NROWB = N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
 | 
						|
     +    (.NOT.LSAME(TRANSA,'T'))) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
 | 
						|
     +         (.NOT.LSAME(TRANSB,'T'))) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF (M.LT.0) THEN
 | 
						|
          INFO = 3
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 4
 | 
						|
      ELSE IF (K.LT.0) THEN
 | 
						|
          INFO = 5
 | 
						|
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | 
						|
          INFO = 8
 | 
						|
      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
 | 
						|
          INFO = 10
 | 
						|
      ELSE IF (LDC.LT.MAX(1,M)) THEN
 | 
						|
          INFO = 13
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('ZGEMM ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
 | 
						|
     +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
 | 
						|
*
 | 
						|
*     And when  alpha.eq.zero.
 | 
						|
*
 | 
						|
      IF (ALPHA.EQ.ZERO) THEN
 | 
						|
          IF (BETA.EQ.ZERO) THEN
 | 
						|
              DO 20 J = 1,N
 | 
						|
                  DO 10 I = 1,M
 | 
						|
                      C(I,J) = ZERO
 | 
						|
   10             CONTINUE
 | 
						|
   20         CONTINUE
 | 
						|
          ELSE
 | 
						|
              DO 40 J = 1,N
 | 
						|
                  DO 30 I = 1,M
 | 
						|
                      C(I,J) = BETA*C(I,J)
 | 
						|
   30             CONTINUE
 | 
						|
   40         CONTINUE
 | 
						|
          END IF
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations.
 | 
						|
*
 | 
						|
      IF (NOTB) THEN
 | 
						|
          IF (NOTA) THEN
 | 
						|
*
 | 
						|
*           Form  C := alpha*A*B + beta*C.
 | 
						|
*
 | 
						|
              DO 90 J = 1,N
 | 
						|
                  IF (BETA.EQ.ZERO) THEN
 | 
						|
                      DO 50 I = 1,M
 | 
						|
                          C(I,J) = ZERO
 | 
						|
   50                 CONTINUE
 | 
						|
                  ELSE IF (BETA.NE.ONE) THEN
 | 
						|
                      DO 60 I = 1,M
 | 
						|
                          C(I,J) = BETA*C(I,J)
 | 
						|
   60                 CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 80 L = 1,K
 | 
						|
                      TEMP = ALPHA*B(L,J)
 | 
						|
                      DO 70 I = 1,M
 | 
						|
                          C(I,J) = C(I,J) + TEMP*A(I,L)
 | 
						|
   70                 CONTINUE
 | 
						|
   80             CONTINUE
 | 
						|
   90         CONTINUE
 | 
						|
          ELSE IF (CONJA) THEN
 | 
						|
*
 | 
						|
*           Form  C := alpha*A**H*B + beta*C.
 | 
						|
*
 | 
						|
              DO 120 J = 1,N
 | 
						|
                  DO 110 I = 1,M
 | 
						|
                      TEMP = ZERO
 | 
						|
                      DO 100 L = 1,K
 | 
						|
                          TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
 | 
						|
  100                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = ALPHA*TEMP
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | 
						|
                      END IF
 | 
						|
  110             CONTINUE
 | 
						|
  120         CONTINUE
 | 
						|
          ELSE
 | 
						|
*
 | 
						|
*           Form  C := alpha*A**T*B + beta*C
 | 
						|
*
 | 
						|
              DO 150 J = 1,N
 | 
						|
                  DO 140 I = 1,M
 | 
						|
                      TEMP = ZERO
 | 
						|
                      DO 130 L = 1,K
 | 
						|
                          TEMP = TEMP + A(L,I)*B(L,J)
 | 
						|
  130                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = ALPHA*TEMP
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | 
						|
                      END IF
 | 
						|
  140             CONTINUE
 | 
						|
  150         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE IF (NOTA) THEN
 | 
						|
          IF (CONJB) THEN
 | 
						|
*
 | 
						|
*           Form  C := alpha*A*B**H + beta*C.
 | 
						|
*
 | 
						|
              DO 200 J = 1,N
 | 
						|
                  IF (BETA.EQ.ZERO) THEN
 | 
						|
                      DO 160 I = 1,M
 | 
						|
                          C(I,J) = ZERO
 | 
						|
  160                 CONTINUE
 | 
						|
                  ELSE IF (BETA.NE.ONE) THEN
 | 
						|
                      DO 170 I = 1,M
 | 
						|
                          C(I,J) = BETA*C(I,J)
 | 
						|
  170                 CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 190 L = 1,K
 | 
						|
                      TEMP = ALPHA*DCONJG(B(J,L))
 | 
						|
                      DO 180 I = 1,M
 | 
						|
                          C(I,J) = C(I,J) + TEMP*A(I,L)
 | 
						|
  180                 CONTINUE
 | 
						|
  190             CONTINUE
 | 
						|
  200         CONTINUE
 | 
						|
          ELSE
 | 
						|
*
 | 
						|
*           Form  C := alpha*A*B**T + beta*C
 | 
						|
*
 | 
						|
              DO 250 J = 1,N
 | 
						|
                  IF (BETA.EQ.ZERO) THEN
 | 
						|
                      DO 210 I = 1,M
 | 
						|
                          C(I,J) = ZERO
 | 
						|
  210                 CONTINUE
 | 
						|
                  ELSE IF (BETA.NE.ONE) THEN
 | 
						|
                      DO 220 I = 1,M
 | 
						|
                          C(I,J) = BETA*C(I,J)
 | 
						|
  220                 CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 240 L = 1,K
 | 
						|
                      TEMP = ALPHA*B(J,L)
 | 
						|
                      DO 230 I = 1,M
 | 
						|
                          C(I,J) = C(I,J) + TEMP*A(I,L)
 | 
						|
  230                 CONTINUE
 | 
						|
  240             CONTINUE
 | 
						|
  250         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE IF (CONJA) THEN
 | 
						|
          IF (CONJB) THEN
 | 
						|
*
 | 
						|
*           Form  C := alpha*A**H*B**H + beta*C.
 | 
						|
*
 | 
						|
              DO 280 J = 1,N
 | 
						|
                  DO 270 I = 1,M
 | 
						|
                      TEMP = ZERO
 | 
						|
                      DO 260 L = 1,K
 | 
						|
                          TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
 | 
						|
  260                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = ALPHA*TEMP
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | 
						|
                      END IF
 | 
						|
  270             CONTINUE
 | 
						|
  280         CONTINUE
 | 
						|
          ELSE
 | 
						|
*
 | 
						|
*           Form  C := alpha*A**H*B**T + beta*C
 | 
						|
*
 | 
						|
              DO 310 J = 1,N
 | 
						|
                  DO 300 I = 1,M
 | 
						|
                      TEMP = ZERO
 | 
						|
                      DO 290 L = 1,K
 | 
						|
                          TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
 | 
						|
  290                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = ALPHA*TEMP
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | 
						|
                      END IF
 | 
						|
  300             CONTINUE
 | 
						|
  310         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
          IF (CONJB) THEN
 | 
						|
*
 | 
						|
*           Form  C := alpha*A**T*B**H + beta*C
 | 
						|
*
 | 
						|
              DO 340 J = 1,N
 | 
						|
                  DO 330 I = 1,M
 | 
						|
                      TEMP = ZERO
 | 
						|
                      DO 320 L = 1,K
 | 
						|
                          TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
 | 
						|
  320                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = ALPHA*TEMP
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | 
						|
                      END IF
 | 
						|
  330             CONTINUE
 | 
						|
  340         CONTINUE
 | 
						|
          ELSE
 | 
						|
*
 | 
						|
*           Form  C := alpha*A**T*B**T + beta*C
 | 
						|
*
 | 
						|
              DO 370 J = 1,N
 | 
						|
                  DO 360 I = 1,M
 | 
						|
                      TEMP = ZERO
 | 
						|
                      DO 350 L = 1,K
 | 
						|
                          TEMP = TEMP + A(L,I)*B(J,L)
 | 
						|
  350                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = ALPHA*TEMP
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | 
						|
                      END IF
 | 
						|
  360             CONTINUE
 | 
						|
  370         CONTINUE
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGEMM .
 | 
						|
*
 | 
						|
      END
 |