323 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZPST01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
 | 
						|
*                          PIV, RWORK, RESID, RANK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       INTEGER            LDA, LDAFAC, LDPERM, N, RANK
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ),
 | 
						|
*      $                   PERM( LDPERM, * )
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       INTEGER            PIV( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZPST01 reconstructs an Hermitian positive semidefinite matrix A
 | 
						|
*> from its L or U factors and the permutation matrix P and computes
 | 
						|
*> the residual
 | 
						|
*>    norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
 | 
						|
*>    norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
 | 
						|
*> where EPS is the machine epsilon, L' is the conjugate transpose of L,
 | 
						|
*> and U' is the conjugate transpose of U.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          Hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The original Hermitian matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
 | 
						|
*>          The factor L or U from the L*L' or U'*U
 | 
						|
*>          factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFAC
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFAC is INTEGER
 | 
						|
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PERM
 | 
						|
*> \verbatim
 | 
						|
*>          PERM is COMPLEX*16 array, dimension (LDPERM,N)
 | 
						|
*>          Overwritten with the reconstructed matrix, and then with the
 | 
						|
*>          difference P*L*L'*P' - A (or P*U'*U*P' - A)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDPERM
 | 
						|
*> \verbatim
 | 
						|
*>          LDPERM is INTEGER
 | 
						|
*>          The leading dimension of the array PERM.
 | 
						|
*>          LDAPERM >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PIV
 | 
						|
*> \verbatim
 | 
						|
*>          PIV is INTEGER array, dimension (N)
 | 
						|
*>          PIV is such that the nonzero entries are
 | 
						|
*>          P( PIV( K ), K ) = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
 | 
						|
*>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>          number of nonzero singular values of A.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
 | 
						|
     $                   PIV, RWORK, RESID, RANK )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
      INTEGER            LDA, LDAFAC, LDPERM, N, RANK
 | 
						|
      CHARACTER          UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ),
 | 
						|
     $                   PERM( LDPERM, * )
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      INTEGER            PIV( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      COMPLEX*16         CZERO
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX*16         TC
 | 
						|
      DOUBLE PRECISION   ANORM, EPS, TR
 | 
						|
      INTEGER            I, J, K
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      COMPLEX*16         ZDOTC
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANHE
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           ZDOTC, DLAMCH, ZLANHE, LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZHER, ZSCAL, ZTRMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DCONJG, DIMAG
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check the imaginary parts of the diagonal elements and return with
 | 
						|
*     an error code if any are nonzero.
 | 
						|
*
 | 
						|
      DO 100 J = 1, N
 | 
						|
         IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
 | 
						|
            RESID = ONE / EPS
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
*     Compute the product U'*U, overwriting U.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
         IF( RANK.LT.N ) THEN
 | 
						|
            DO 120 J = RANK + 1, N
 | 
						|
               DO 110 I = RANK + 1, J
 | 
						|
                  AFAC( I, J ) = CZERO
 | 
						|
  110          CONTINUE
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 130 K = N, 1, -1
 | 
						|
*
 | 
						|
*           Compute the (K,K) element of the result.
 | 
						|
*
 | 
						|
            TR = DBLE( ZDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) )
 | 
						|
            AFAC( K, K ) = TR
 | 
						|
*
 | 
						|
*           Compute the rest of column K.
 | 
						|
*
 | 
						|
            CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
 | 
						|
     $                  LDAFAC, AFAC( 1, K ), 1 )
 | 
						|
*
 | 
						|
  130    CONTINUE
 | 
						|
*
 | 
						|
*     Compute the product L*L', overwriting L.
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
         IF( RANK.LT.N ) THEN
 | 
						|
            DO 150 J = RANK + 1, N
 | 
						|
               DO 140 I = J, N
 | 
						|
                  AFAC( I, J ) = CZERO
 | 
						|
  140          CONTINUE
 | 
						|
  150       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 160 K = N, 1, -1
 | 
						|
*           Add a multiple of column K of the factor L to each of
 | 
						|
*           columns K+1 through N.
 | 
						|
*
 | 
						|
            IF( K+1.LE.N )
 | 
						|
     $         CALL ZHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
 | 
						|
     $                    AFAC( K+1, K+1 ), LDAFAC )
 | 
						|
*
 | 
						|
*           Scale column K by the diagonal element.
 | 
						|
*
 | 
						|
            TC = AFAC( K, K )
 | 
						|
            CALL ZSCAL( N-K+1, TC, AFAC( K, K ), 1 )
 | 
						|
  160    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*        Form P*L*L'*P' or P*U'*U*P'
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
         DO 180 J = 1, N
 | 
						|
            DO 170 I = 1, N
 | 
						|
               IF( PIV( I ).LE.PIV( J ) ) THEN
 | 
						|
                  IF( I.LE.J ) THEN
 | 
						|
                     PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
 | 
						|
                  ELSE
 | 
						|
                     PERM( PIV( I ), PIV( J ) ) = DCONJG( AFAC( J, I ) )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
  170       CONTINUE
 | 
						|
  180    CONTINUE
 | 
						|
*
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
         DO 200 J = 1, N
 | 
						|
            DO 190 I = 1, N
 | 
						|
               IF( PIV( I ).GE.PIV( J ) ) THEN
 | 
						|
                  IF( I.GE.J ) THEN
 | 
						|
                     PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
 | 
						|
                  ELSE
 | 
						|
                     PERM( PIV( I ), PIV( J ) ) = DCONJG( AFAC( J, I ) )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
  190       CONTINUE
 | 
						|
  200    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the difference  P*L*L'*P' - A (or P*U'*U*P' - A).
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 220 J = 1, N
 | 
						|
            DO 210 I = 1, J - 1
 | 
						|
               PERM( I, J ) = PERM( I, J ) - A( I, J )
 | 
						|
  210       CONTINUE
 | 
						|
            PERM( J, J ) = PERM( J, J ) - DBLE( A( J, J ) )
 | 
						|
  220    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 240 J = 1, N
 | 
						|
            PERM( J, J ) = PERM( J, J ) - DBLE( A( J, J ) )
 | 
						|
            DO 230 I = J + 1, N
 | 
						|
               PERM( I, J ) = PERM( I, J ) - A( I, J )
 | 
						|
  230       CONTINUE
 | 
						|
  240    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or
 | 
						|
*     ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ).
 | 
						|
*
 | 
						|
      RESID = ZLANHE( '1', UPLO, N, PERM, LDAFAC, RWORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZPST01
 | 
						|
*
 | 
						|
      END
 |