217 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPBT02
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPBT02( UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB,
 | 
						|
*                          RWORK, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            KD, LDA, LDB, LDX, N, NRHS
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), B( LDB, * ), X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPBT02 computes the residual for a solution of a Hermitian banded
 | 
						|
*> system of equations  A*x = b:
 | 
						|
*>    RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS)
 | 
						|
*> where EPS is the machine precision.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          Hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KD
 | 
						|
*> \verbatim
 | 
						|
*>          KD is INTEGER
 | 
						|
*>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides. NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          The original Hermitian band matrix A.  If UPLO = 'U', the
 | 
						|
*>          upper triangular part of A is stored as a band matrix; if
 | 
						|
*>          UPLO = 'L', the lower triangular part of A is stored.  The
 | 
						|
*>          columns of the appropriate triangle are stored in the columns
 | 
						|
*>          of A and the diagonals of the triangle are stored in the rows
 | 
						|
*>          of A.  See CPBTRF for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER.
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,KD+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension (LDX,NRHS)
 | 
						|
*>          The computed solution vectors for the system of linear
 | 
						|
*>          equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.   LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side vectors for the system of
 | 
						|
*>          linear equations.
 | 
						|
*>          On exit, B is overwritten with the difference B - A*X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          The maximum over the number of right hand sides of
 | 
						|
*>          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPBT02( UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB,
 | 
						|
     $                   RWORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            KD, LDA, LDB, LDX, N, NRHS
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), B( LDB, * ), X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J
 | 
						|
      REAL               ANORM, BNORM, EPS, XNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               CLANHB, SCASUM, SLAMCH
 | 
						|
      EXTERNAL           CLANHB, SCASUM, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CHBMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0 or NRHS = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      ANORM = CLANHB( '1', UPLO, N, KD, A, LDA, RWORK )
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute  B - A*X
 | 
						|
*
 | 
						|
      DO 10 J = 1, NRHS
 | 
						|
         CALL CHBMV( UPLO, N, KD, -CONE, A, LDA, X( 1, J ), 1, CONE,
 | 
						|
     $               B( 1, J ), 1 )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Compute the maximum over the number of right hand sides of
 | 
						|
*          norm( B - A*X ) / ( norm(A) * norm(X) * EPS )
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      DO 20 J = 1, NRHS
 | 
						|
         BNORM = SCASUM( N, B( 1, J ), 1 )
 | 
						|
         XNORM = SCASUM( N, X( 1, J ), 1 )
 | 
						|
         IF( XNORM.LE.ZERO ) THEN
 | 
						|
            RESID = ONE / EPS
 | 
						|
         ELSE
 | 
						|
            RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS )
 | 
						|
         END IF
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPBT02
 | 
						|
*
 | 
						|
      END
 |