298 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGGRQF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGGRQF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggrqf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggrqf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggrqf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
 | |
| *                          LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGGRQF computes a generalized RQ factorization of an M-by-N matrix A
 | |
| *> and a P-by-N matrix B:
 | |
| *>
 | |
| *>             A = R*Q,        B = Z*T*Q,
 | |
| *>
 | |
| *> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary
 | |
| *> matrix, and R and T assume one of the forms:
 | |
| *>
 | |
| *> if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N,
 | |
| *>                  N-M  M                           ( R21 ) N
 | |
| *>                                                      N
 | |
| *>
 | |
| *> where R12 or R21 is upper triangular, and
 | |
| *>
 | |
| *> if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P,
 | |
| *>                 (  0  ) P-N                         P   N-P
 | |
| *>                    N
 | |
| *>
 | |
| *> where T11 is upper triangular.
 | |
| *>
 | |
| *> In particular, if B is square and nonsingular, the GRQ factorization
 | |
| *> of A and B implicitly gives the RQ factorization of A*inv(B):
 | |
| *>
 | |
| *>              A*inv(B) = (R*inv(T))*Z**H
 | |
| *>
 | |
| *> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the
 | |
| *> conjugate transpose of the matrix Z.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and B. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, if M <= N, the upper triangle of the subarray
 | |
| *>          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
 | |
| *>          if M > N, the elements on and above the (M-N)-th subdiagonal
 | |
| *>          contain the M-by-N upper trapezoidal matrix R; the remaining
 | |
| *>          elements, with the array TAUA, represent the unitary
 | |
| *>          matrix Q as a product of elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUA
 | |
| *> \verbatim
 | |
| *>          TAUA is COMPLEX array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors which
 | |
| *>          represent the unitary matrix Q (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          On entry, the P-by-N matrix B.
 | |
| *>          On exit, the elements on and above the diagonal of the array
 | |
| *>          contain the min(P,N)-by-N upper trapezoidal matrix T (T is
 | |
| *>          upper triangular if P >= N); the elements below the diagonal,
 | |
| *>          with the array TAUB, represent the unitary matrix Z as a
 | |
| *>          product of elementary reflectors (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUB
 | |
| *> \verbatim
 | |
| *>          TAUB is COMPLEX array, dimension (min(P,N))
 | |
| *>          The scalar factors of the elementary reflectors which
 | |
| *>          represent the unitary matrix Z (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,N,M,P).
 | |
| *>          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
 | |
| *>          where NB1 is the optimal blocksize for the RQ factorization
 | |
| *>          of an M-by-N matrix, NB2 is the optimal blocksize for the
 | |
| *>          QR factorization of a P-by-N matrix, and NB3 is the optimal
 | |
| *>          blocksize for a call of CUNMRQ.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO=-i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup ggrqf
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - taua * v * v**H
 | |
| *>
 | |
| *>  where taua is a complex scalar, and v is a complex vector with
 | |
| *>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
 | |
| *>  A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
 | |
| *>  To form Q explicitly, use LAPACK subroutine CUNGRQ.
 | |
| *>  To use Q to update another matrix, use LAPACK subroutine CUNMRQ.
 | |
| *>
 | |
| *>  The matrix Z is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Z = H(1) H(2) . . . H(k), where k = min(p,n).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - taub * v * v**H
 | |
| *>
 | |
| *>  where taub is a complex scalar, and v is a complex vector with
 | |
| *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
 | |
| *>  and taub in TAUB(i).
 | |
| *>  To form Z explicitly, use LAPACK subroutine CUNGQR.
 | |
| *>  To use Z to update another matrix, use LAPACK subroutine CUNMQR.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
 | |
|      $                   LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEQRF, CGERQF, CUNMRQ, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SROUNDUP_LWORK
 | |
|       EXTERNAL           ILAENV, SROUNDUP_LWORK
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          INT, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       NB1 = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 )
 | |
|       NB2 = ILAENV( 1, 'CGEQRF', ' ', P, N, -1, -1 )
 | |
|       NB3 = ILAENV( 1, 'CUNMRQ', ' ', M, N, P, -1 )
 | |
|       NB = MAX( NB1, NB2, NB3 )
 | |
|       LWKOPT = MAX( 1, MAX( N, M, P )*NB )
 | |
|       WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( P.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LWORK.LT.MAX( 1, M, P, N ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGGRQF', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     RQ factorization of M-by-N matrix A: A = R*Q
 | |
| *
 | |
|       CALL CGERQF( M, N, A, LDA, TAUA, WORK, LWORK, INFO )
 | |
|       LOPT = INT( WORK( 1 ) )
 | |
| *
 | |
| *     Update B := B*Q**H
 | |
| *
 | |
|       CALL CUNMRQ( 'Right', 'Conjugate Transpose', P, N, MIN( M, N ),
 | |
|      $             A( MAX( 1, M-N+1 ), 1 ), LDA, TAUA, B, LDB, WORK,
 | |
|      $             LWORK, INFO )
 | |
|       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
 | |
| *
 | |
| *     QR factorization of P-by-N matrix B: B = Z*T
 | |
| *
 | |
|       CALL CGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO )
 | |
|       WORK( 1 ) = SROUNDUP_LWORK( MAX( LOPT, INT( WORK( 1 ) ) ) )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGGRQF
 | |
| *
 | |
|       END
 |