223 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			223 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b STRT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE STRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
 | 
						|
*                          WORK, RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, UPLO
 | 
						|
*       INTEGER            LDA, LDAINV, N
 | 
						|
*       REAL               RCOND, RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), AINV( LDAINV, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> STRT01 computes the residual for a triangular matrix A times its
 | 
						|
*> inverse:
 | 
						|
*>    RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix A is upper or lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          Specifies whether or not the matrix A is unit triangular.
 | 
						|
*>          = 'N':  Non-unit triangular
 | 
						|
*>          = 'U':  Unit triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The triangular matrix A.  If UPLO = 'U', the leading n by n
 | 
						|
*>          upper triangular part of the array A contains the upper
 | 
						|
*>          triangular matrix, and the strictly lower triangular part of
 | 
						|
*>          A is not referenced.  If UPLO = 'L', the leading n by n lower
 | 
						|
*>          triangular part of the array A contains the lower triangular
 | 
						|
*>          matrix, and the strictly upper triangular part of A is not
 | 
						|
*>          referenced.  If DIAG = 'U', the diagonal elements of A are
 | 
						|
*>          also not referenced and are assumed to be 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AINV
 | 
						|
*> \verbatim
 | 
						|
*>          AINV is REAL array, dimension (LDAINV,N)
 | 
						|
*>          On entry, the (triangular) inverse of the matrix A, in the
 | 
						|
*>          same storage format as A.
 | 
						|
*>          On exit, the contents of AINV are destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAINV
 | 
						|
*> \verbatim
 | 
						|
*>          LDAINV is INTEGER
 | 
						|
*>          The leading dimension of the array AINV.  LDAINV >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          The reciprocal condition number of A, computed as
 | 
						|
*>          1/(norm(A) * norm(AINV)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE STRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
 | 
						|
     $                   WORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, UPLO
 | 
						|
      INTEGER            LDA, LDAINV, N
 | 
						|
      REAL               RCOND, RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), AINV( LDAINV, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J
 | 
						|
      REAL               AINVNM, ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLAMCH, SLANTR
 | 
						|
      EXTERNAL           LSAME, SLAMCH, SLANTR
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           STRMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      ANORM = SLANTR( '1', UPLO, DIAG, N, N, A, LDA, WORK )
 | 
						|
      AINVNM = SLANTR( '1', UPLO, DIAG, N, N, AINV, LDAINV, WORK )
 | 
						|
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
         RCOND = ZERO
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      RCOND = ( ONE / ANORM ) / AINVNM
 | 
						|
*
 | 
						|
*     Set the diagonal of AINV to 1 if AINV has unit diagonal.
 | 
						|
*
 | 
						|
      IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
         DO 10 J = 1, N
 | 
						|
            AINV( J, J ) = ONE
 | 
						|
   10    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute A * AINV, overwriting AINV.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 20 J = 1, N
 | 
						|
            CALL STRMV( 'Upper', 'No transpose', DIAG, J, A, LDA,
 | 
						|
     $                  AINV( 1, J ), 1 )
 | 
						|
   20    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 30 J = 1, N
 | 
						|
            CALL STRMV( 'Lower', 'No transpose', DIAG, N-J+1, A( J, J ),
 | 
						|
     $                  LDA, AINV( J, J ), 1 )
 | 
						|
   30    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Subtract 1 from each diagonal element to form A*AINV - I.
 | 
						|
*
 | 
						|
      DO 40 J = 1, N
 | 
						|
         AINV( J, J ) = AINV( J, J ) - ONE
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
 | 
						|
*
 | 
						|
      RESID = SLANTR( '1', UPLO, 'Non-unit', N, N, AINV, LDAINV, WORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID*RCOND ) / REAL( N ) ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of STRT01
 | 
						|
*
 | 
						|
      END
 |