406 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			406 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGEBAL
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGEBAL + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgebal.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgebal.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgebal.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOB
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), SCALE( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGEBAL balances a general real matrix A.  This involves, first,
 | 
						|
*> permuting A by a similarity transformation to isolate eigenvalues
 | 
						|
*> in the first 1 to ILO-1 and last IHI+1 to N elements on the
 | 
						|
*> diagonal; and second, applying a diagonal similarity transformation
 | 
						|
*> to rows and columns ILO to IHI to make the rows and columns as
 | 
						|
*> close in norm as possible.  Both steps are optional.
 | 
						|
*>
 | 
						|
*> Balancing may reduce the 1-norm of the matrix, and improve the
 | 
						|
*> accuracy of the computed eigenvalues and/or eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is CHARACTER*1
 | 
						|
*>          Specifies the operations to be performed on A:
 | 
						|
*>          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0
 | 
						|
*>                  for i = 1,...,N;
 | 
						|
*>          = 'P':  permute only;
 | 
						|
*>          = 'S':  scale only;
 | 
						|
*>          = 'B':  both permute and scale.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the input matrix A.
 | 
						|
*>          On exit,  A is overwritten by the balanced matrix.
 | 
						|
*>          If JOB = 'N', A is not referenced.
 | 
						|
*>          See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*> \param[out] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>          ILO and IHI are set to integers such that on exit
 | 
						|
*>          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
 | 
						|
*>          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is REAL array, dimension (N)
 | 
						|
*>          Details of the permutations and scaling factors applied to
 | 
						|
*>          A.  If P(j) is the index of the row and column interchanged
 | 
						|
*>          with row and column j and D(j) is the scaling factor
 | 
						|
*>          applied to row and column j, then
 | 
						|
*>          SCALE(j) = P(j)    for j = 1,...,ILO-1
 | 
						|
*>                   = D(j)    for j = ILO,...,IHI
 | 
						|
*>                   = P(j)    for j = IHI+1,...,N.
 | 
						|
*>          The order in which the interchanges are made is N to IHI+1,
 | 
						|
*>          then 1 to ILO-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup realGEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The permutations consist of row and column interchanges which put
 | 
						|
*>  the matrix in the form
 | 
						|
*>
 | 
						|
*>             ( T1   X   Y  )
 | 
						|
*>     P A P = (  0   B   Z  )
 | 
						|
*>             (  0   0   T2 )
 | 
						|
*>
 | 
						|
*>  where T1 and T2 are upper triangular matrices whose eigenvalues lie
 | 
						|
*>  along the diagonal.  The column indices ILO and IHI mark the starting
 | 
						|
*>  and ending columns of the submatrix B. Balancing consists of applying
 | 
						|
*>  a diagonal similarity transformation inv(D) * B * D to make the
 | 
						|
*>  1-norms of each row of B and its corresponding column nearly equal.
 | 
						|
*>  The output matrix is
 | 
						|
*>
 | 
						|
*>     ( T1     X*D          Y    )
 | 
						|
*>     (  0  inv(D)*B*D  inv(D)*Z ).
 | 
						|
*>     (  0      0           T2   )
 | 
						|
*>
 | 
						|
*>  Information about the permutations P and the diagonal matrix D is
 | 
						|
*>  returned in the vector SCALE.
 | 
						|
*>
 | 
						|
*>  This subroutine is based on the EISPACK routine BALANC.
 | 
						|
*>
 | 
						|
*>  Modified by Tzu-Yi Chen, Computer Science Division, University of
 | 
						|
*>    California at Berkeley, USA
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOB
 | 
						|
      INTEGER            IHI, ILO, INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), SCALE( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      REAL               SCLFAC
 | 
						|
      PARAMETER          ( SCLFAC = 2.0E+0 )
 | 
						|
      REAL               FACTOR
 | 
						|
      PARAMETER          ( FACTOR = 0.95E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOCONV
 | 
						|
      INTEGER            I, ICA, IEXC, IRA, J, K, L, M
 | 
						|
      REAL               C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
 | 
						|
     $                   SFMIN2
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            SISNAN, LSAME
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SISNAN, LSAME, ISAMAX, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SSCAL, SSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
 | 
						|
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGEBAL', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      K = 1
 | 
						|
      L = N
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   GO TO 210
 | 
						|
*
 | 
						|
      IF( LSAME( JOB, 'N' ) ) THEN
 | 
						|
         DO 10 I = 1, N
 | 
						|
            SCALE( I ) = ONE
 | 
						|
   10    CONTINUE
 | 
						|
         GO TO 210
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( JOB, 'S' ) )
 | 
						|
     $   GO TO 120
 | 
						|
*
 | 
						|
*     Permutation to isolate eigenvalues if possible
 | 
						|
*
 | 
						|
      GO TO 50
 | 
						|
*
 | 
						|
*     Row and column exchange.
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
      SCALE( M ) = J
 | 
						|
      IF( J.EQ.M )
 | 
						|
     $   GO TO 30
 | 
						|
*
 | 
						|
      CALL SSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
 | 
						|
      CALL SSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA )
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      GO TO ( 40, 80 )IEXC
 | 
						|
*
 | 
						|
*     Search for rows isolating an eigenvalue and push them down.
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      IF( L.EQ.1 )
 | 
						|
     $   GO TO 210
 | 
						|
      L = L - 1
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
      DO 70 J = L, 1, -1
 | 
						|
*
 | 
						|
         DO 60 I = 1, L
 | 
						|
            IF( I.EQ.J )
 | 
						|
     $         GO TO 60
 | 
						|
            IF( A( J, I ).NE.ZERO )
 | 
						|
     $         GO TO 70
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
         M = L
 | 
						|
         IEXC = 1
 | 
						|
         GO TO 20
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
      GO TO 90
 | 
						|
*
 | 
						|
*     Search for columns isolating an eigenvalue and push them left.
 | 
						|
*
 | 
						|
   80 CONTINUE
 | 
						|
      K = K + 1
 | 
						|
*
 | 
						|
   90 CONTINUE
 | 
						|
      DO 110 J = K, L
 | 
						|
*
 | 
						|
         DO 100 I = K, L
 | 
						|
            IF( I.EQ.J )
 | 
						|
     $         GO TO 100
 | 
						|
            IF( A( I, J ).NE.ZERO )
 | 
						|
     $         GO TO 110
 | 
						|
  100    CONTINUE
 | 
						|
*
 | 
						|
         M = K
 | 
						|
         IEXC = 2
 | 
						|
         GO TO 20
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
  120 CONTINUE
 | 
						|
      DO 130 I = K, L
 | 
						|
         SCALE( I ) = ONE
 | 
						|
  130 CONTINUE
 | 
						|
*
 | 
						|
      IF( LSAME( JOB, 'P' ) )
 | 
						|
     $   GO TO 210
 | 
						|
*
 | 
						|
*     Balance the submatrix in rows K to L.
 | 
						|
*
 | 
						|
*     Iterative loop for norm reduction
 | 
						|
*
 | 
						|
      SFMIN1 = SLAMCH( 'S' ) / SLAMCH( 'P' )
 | 
						|
      SFMAX1 = ONE / SFMIN1
 | 
						|
      SFMIN2 = SFMIN1*SCLFAC
 | 
						|
      SFMAX2 = ONE / SFMIN2
 | 
						|
  140 CONTINUE
 | 
						|
      NOCONV = .FALSE.
 | 
						|
*
 | 
						|
      DO 200 I = K, L
 | 
						|
         C = ZERO
 | 
						|
         R = ZERO
 | 
						|
*
 | 
						|
         DO 150 J = K, L
 | 
						|
            IF( J.EQ.I )
 | 
						|
     $         GO TO 150
 | 
						|
            C = C + ABS( A( J, I ) )
 | 
						|
            R = R + ABS( A( I, J ) )
 | 
						|
  150    CONTINUE
 | 
						|
         ICA = ISAMAX( L, A( 1, I ), 1 )
 | 
						|
         CA = ABS( A( ICA, I ) )
 | 
						|
         IRA = ISAMAX( N-K+1, A( I, K ), LDA )
 | 
						|
         RA = ABS( A( I, IRA+K-1 ) )
 | 
						|
*
 | 
						|
*        Guard against zero C or R due to underflow.
 | 
						|
*
 | 
						|
         IF( C.EQ.ZERO .OR. R.EQ.ZERO )
 | 
						|
     $      GO TO 200
 | 
						|
         G = R / SCLFAC
 | 
						|
         F = ONE
 | 
						|
         S = C + R
 | 
						|
  160    CONTINUE
 | 
						|
         IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
 | 
						|
     $       MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
 | 
						|
         F = F*SCLFAC
 | 
						|
         C = C*SCLFAC
 | 
						|
         CA = CA*SCLFAC
 | 
						|
         R = R / SCLFAC
 | 
						|
         G = G / SCLFAC
 | 
						|
         RA = RA / SCLFAC
 | 
						|
         GO TO 160
 | 
						|
*
 | 
						|
  170    CONTINUE
 | 
						|
         G = C / SCLFAC
 | 
						|
  180    CONTINUE
 | 
						|
         IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
 | 
						|
     $       MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
 | 
						|
            IF( SISNAN( C+F+CA+R+G+RA ) ) THEN
 | 
						|
*
 | 
						|
*           Exit if NaN to avoid infinite loop
 | 
						|
*
 | 
						|
            INFO = -3
 | 
						|
            CALL XERBLA( 'SGEBAL', -INFO )
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         F = F / SCLFAC
 | 
						|
         C = C / SCLFAC
 | 
						|
         G = G / SCLFAC
 | 
						|
         CA = CA / SCLFAC
 | 
						|
         R = R*SCLFAC
 | 
						|
         RA = RA*SCLFAC
 | 
						|
         GO TO 180
 | 
						|
*
 | 
						|
*        Now balance.
 | 
						|
*
 | 
						|
  190    CONTINUE
 | 
						|
         IF( ( C+R ).GE.FACTOR*S )
 | 
						|
     $      GO TO 200
 | 
						|
         IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
 | 
						|
            IF( F*SCALE( I ).LE.SFMIN1 )
 | 
						|
     $         GO TO 200
 | 
						|
         END IF
 | 
						|
         IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
 | 
						|
            IF( SCALE( I ).GE.SFMAX1 / F )
 | 
						|
     $         GO TO 200
 | 
						|
         END IF
 | 
						|
         G = ONE / F
 | 
						|
         SCALE( I ) = SCALE( I )*F
 | 
						|
         NOCONV = .TRUE.
 | 
						|
*
 | 
						|
         CALL SSCAL( N-K+1, G, A( I, K ), LDA )
 | 
						|
         CALL SSCAL( L, F, A( 1, I ), 1 )
 | 
						|
*
 | 
						|
  200 CONTINUE
 | 
						|
*
 | 
						|
      IF( NOCONV )
 | 
						|
     $   GO TO 140
 | 
						|
*
 | 
						|
  210 CONTINUE
 | 
						|
      ILO = K
 | 
						|
      IHI = L
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGEBAL
 | 
						|
*
 | 
						|
      END
 |