300 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			300 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DORMR3 multiplies a general matrix by the orthogonal matrix from a RZ factorization determined by stzrzf (unblocked algorithm).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DORMR3 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormr3.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormr3.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormr3.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 | 
						|
*                          WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          SIDE, TRANS
 | 
						|
*       INTEGER            INFO, K, L, LDA, LDC, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DORMR3 overwrites the general real m by n matrix C with
 | 
						|
*>
 | 
						|
*>       Q * C  if SIDE = 'L' and TRANS = 'N', or
 | 
						|
*>
 | 
						|
*>       Q**T* C  if SIDE = 'L' and TRANS = 'C', or
 | 
						|
*>
 | 
						|
*>       C * Q  if SIDE = 'R' and TRANS = 'N', or
 | 
						|
*>
 | 
						|
*>       C * Q**T if SIDE = 'R' and TRANS = 'C',
 | 
						|
*>
 | 
						|
*> where Q is a real orthogonal matrix defined as the product of k
 | 
						|
*> elementary reflectors
 | 
						|
*>
 | 
						|
*>       Q = H(1) H(2) . . . H(k)
 | 
						|
*>
 | 
						|
*> as returned by DTZRZF. Q is of order m if SIDE = 'L' and of order n
 | 
						|
*> if SIDE = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'L': apply Q or Q**T from the Left
 | 
						|
*>          = 'R': apply Q or Q**T from the Right
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N': apply Q  (No transpose)
 | 
						|
*>          = 'T': apply Q**T (Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix C. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix C. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of elementary reflectors whose product defines
 | 
						|
*>          the matrix Q.
 | 
						|
*>          If SIDE = 'L', M >= K >= 0;
 | 
						|
*>          if SIDE = 'R', N >= K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is INTEGER
 | 
						|
*>          The number of columns of the matrix A containing
 | 
						|
*>          the meaningful part of the Householder reflectors.
 | 
						|
*>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension
 | 
						|
*>                               (LDA,M) if SIDE = 'L',
 | 
						|
*>                               (LDA,N) if SIDE = 'R'
 | 
						|
*>          The i-th row must contain the vector which defines the
 | 
						|
*>          elementary reflector H(i), for i = 1,2,...,k, as returned by
 | 
						|
*>          DTZRZF in the last k rows of its array argument A.
 | 
						|
*>          A is modified by the routine but restored on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,K).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension (K)
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i), as returned by DTZRZF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (LDC,N)
 | 
						|
*>          On entry, the m-by-n matrix C.
 | 
						|
*>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension
 | 
						|
*>                                   (N) if SIDE = 'L',
 | 
						|
*>                                   (M) if SIDE = 'R'
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 | 
						|
     $                   WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          SIDE, TRANS
 | 
						|
      INTEGER            INFO, K, L, LDA, LDC, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LEFT, NOTRAN
 | 
						|
      INTEGER            I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLARZ, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LEFT = LSAME( SIDE, 'L' )
 | 
						|
      NOTRAN = LSAME( TRANS, 'N' )
 | 
						|
*
 | 
						|
*     NQ is the order of Q
 | 
						|
*
 | 
						|
      IF( LEFT ) THEN
 | 
						|
         NQ = M
 | 
						|
      ELSE
 | 
						|
         NQ = N
 | 
						|
      END IF
 | 
						|
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
 | 
						|
     $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DORMR3', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
 | 
						|
         I1 = 1
 | 
						|
         I2 = K
 | 
						|
         I3 = 1
 | 
						|
      ELSE
 | 
						|
         I1 = K
 | 
						|
         I2 = 1
 | 
						|
         I3 = -1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LEFT ) THEN
 | 
						|
         NI = N
 | 
						|
         JA = M - L + 1
 | 
						|
         JC = 1
 | 
						|
      ELSE
 | 
						|
         MI = M
 | 
						|
         JA = N - L + 1
 | 
						|
         IC = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DO 10 I = I1, I2, I3
 | 
						|
         IF( LEFT ) THEN
 | 
						|
*
 | 
						|
*           H(i) or H(i)**T is applied to C(i:m,1:n)
 | 
						|
*
 | 
						|
            MI = M - I + 1
 | 
						|
            IC = I
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           H(i) or H(i)**T is applied to C(1:m,i:n)
 | 
						|
*
 | 
						|
            NI = N - I + 1
 | 
						|
            JC = I
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Apply H(i) or H(i)**T
 | 
						|
*
 | 
						|
         CALL DLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAU( I ),
 | 
						|
     $               C( IC, JC ), LDC, WORK )
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DORMR3
 | 
						|
*
 | 
						|
      END
 |