567 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			567 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAQR2 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr2.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr2.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr2.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
 | 
						|
*                          IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
 | 
						|
*                          NV, WV, LDWV, WORK, LWORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
 | 
						|
*      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
 | 
						|
*       LOGICAL            WANTT, WANTZ
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
 | 
						|
*      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    CLAQR2 is identical to CLAQR3 except that it avoids
 | 
						|
*>    recursion by calling CLAHQR instead of CLAQR4.
 | 
						|
*>
 | 
						|
*>    Aggressive early deflation:
 | 
						|
*>
 | 
						|
*>    This subroutine accepts as input an upper Hessenberg matrix
 | 
						|
*>    H and performs an unitary similarity transformation
 | 
						|
*>    designed to detect and deflate fully converged eigenvalues from
 | 
						|
*>    a trailing principal submatrix.  On output H has been over-
 | 
						|
*>    written by a new Hessenberg matrix that is a perturbation of
 | 
						|
*>    an unitary similarity transformation of H.  It is to be
 | 
						|
*>    hoped that the final version of H has many zero subdiagonal
 | 
						|
*>    entries.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] WANTT
 | 
						|
*> \verbatim
 | 
						|
*>          WANTT is LOGICAL
 | 
						|
*>          If .TRUE., then the Hessenberg matrix H is fully updated
 | 
						|
*>          so that the triangular Schur factor may be
 | 
						|
*>          computed (in cooperation with the calling subroutine).
 | 
						|
*>          If .FALSE., then only enough of H is updated to preserve
 | 
						|
*>          the eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WANTZ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTZ is LOGICAL
 | 
						|
*>          If .TRUE., then the unitary matrix Z is updated so
 | 
						|
*>          so that the unitary Schur factor may be computed
 | 
						|
*>          (in cooperation with the calling subroutine).
 | 
						|
*>          If .FALSE., then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix H and (if WANTZ is .TRUE.) the
 | 
						|
*>          order of the unitary matrix Z.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KTOP
 | 
						|
*> \verbatim
 | 
						|
*>          KTOP is INTEGER
 | 
						|
*>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
 | 
						|
*>          KBOT and KTOP together determine an isolated block
 | 
						|
*>          along the diagonal of the Hessenberg matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KBOT
 | 
						|
*> \verbatim
 | 
						|
*>          KBOT is INTEGER
 | 
						|
*>          It is assumed without a check that either
 | 
						|
*>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
 | 
						|
*>          determine an isolated block along the diagonal of the
 | 
						|
*>          Hessenberg matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NW
 | 
						|
*> \verbatim
 | 
						|
*>          NW is INTEGER
 | 
						|
*>          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is COMPLEX array, dimension (LDH,N)
 | 
						|
*>          On input the initial N-by-N section of H stores the
 | 
						|
*>          Hessenberg matrix undergoing aggressive early deflation.
 | 
						|
*>          On output H has been transformed by a unitary
 | 
						|
*>          similarity transformation, perturbed, and the returned
 | 
						|
*>          to Hessenberg form that (it is to be hoped) has some
 | 
						|
*>          zero subdiagonal entries.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is integer
 | 
						|
*>          Leading dimension of H just as declared in the calling
 | 
						|
*>          subroutine.  N .LE. LDH
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILOZ
 | 
						|
*> \verbatim
 | 
						|
*>          ILOZ is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHIZ
 | 
						|
*> \verbatim
 | 
						|
*>          IHIZ is INTEGER
 | 
						|
*>          Specify the rows of Z to which transformations must be
 | 
						|
*>          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX array, dimension (LDZ,N)
 | 
						|
*>          IF WANTZ is .TRUE., then on output, the unitary
 | 
						|
*>          similarity transformation mentioned above has been
 | 
						|
*>          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
 | 
						|
*>          If WANTZ is .FALSE., then Z is unreferenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is integer
 | 
						|
*>          The leading dimension of Z just as declared in the
 | 
						|
*>          calling subroutine.  1 .LE. LDZ.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] NS
 | 
						|
*> \verbatim
 | 
						|
*>          NS is integer
 | 
						|
*>          The number of unconverged (ie approximate) eigenvalues
 | 
						|
*>          returned in SR and SI that may be used as shifts by the
 | 
						|
*>          calling subroutine.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ND
 | 
						|
*> \verbatim
 | 
						|
*>          ND is integer
 | 
						|
*>          The number of converged eigenvalues uncovered by this
 | 
						|
*>          subroutine.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SH
 | 
						|
*> \verbatim
 | 
						|
*>          SH is COMPLEX array, dimension KBOT
 | 
						|
*>          On output, approximate eigenvalues that may
 | 
						|
*>          be used for shifts are stored in SH(KBOT-ND-NS+1)
 | 
						|
*>          through SR(KBOT-ND).  Converged eigenvalues are
 | 
						|
*>          stored in SH(KBOT-ND+1) through SH(KBOT).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX array, dimension (LDV,NW)
 | 
						|
*>          An NW-by-NW work array.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is integer scalar
 | 
						|
*>          The leading dimension of V just as declared in the
 | 
						|
*>          calling subroutine.  NW .LE. LDV
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NH
 | 
						|
*> \verbatim
 | 
						|
*>          NH is integer scalar
 | 
						|
*>          The number of columns of T.  NH.GE.NW.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is COMPLEX array, dimension (LDT,NW)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is integer
 | 
						|
*>          The leading dimension of T just as declared in the
 | 
						|
*>          calling subroutine.  NW .LE. LDT
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NV
 | 
						|
*> \verbatim
 | 
						|
*>          NV is integer
 | 
						|
*>          The number of rows of work array WV available for
 | 
						|
*>          workspace.  NV.GE.NW.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WV
 | 
						|
*> \verbatim
 | 
						|
*>          WV is COMPLEX array, dimension (LDWV,NW)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWV
 | 
						|
*> \verbatim
 | 
						|
*>          LDWV is integer
 | 
						|
*>          The leading dimension of W just as declared in the
 | 
						|
*>          calling subroutine.  NW .LE. LDV
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension LWORK.
 | 
						|
*>          On exit, WORK(1) is set to an estimate of the optimal value
 | 
						|
*>          of LWORK for the given values of N, NW, KTOP and KBOT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is integer
 | 
						|
*>          The dimension of the work array WORK.  LWORK = 2*NW
 | 
						|
*>          suffices, but greater efficiency may result from larger
 | 
						|
*>          values of LWORK.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; CLAQR2
 | 
						|
*>          only estimates the optimal workspace size for the given
 | 
						|
*>          values of N, NW, KTOP and KBOT.  The estimate is returned
 | 
						|
*>          in WORK(1).  No error message related to LWORK is issued
 | 
						|
*>          by XERBLA.  Neither H nor Z are accessed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>       Karen Braman and Ralph Byers, Department of Mathematics,
 | 
						|
*>       University of Kansas, USA
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
 | 
						|
     $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
 | 
						|
     $                   NV, WV, LDWV, WORK, LWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
 | 
						|
     $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
 | 
						|
      LOGICAL            WANTT, WANTZ
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
 | 
						|
     $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  ================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = ( 0.0e0, 0.0e0 ),
 | 
						|
     $                   ONE = ( 1.0e0, 0.0e0 ) )
 | 
						|
      REAL               RZERO, RONE
 | 
						|
      PARAMETER          ( RZERO = 0.0e0, RONE = 1.0e0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX            BETA, CDUM, S, TAU
 | 
						|
      REAL               FOO, SAFMAX, SAFMIN, SMLNUM, ULP
 | 
						|
      INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
 | 
						|
     $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWKOPT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CGEHRD, CGEMM, CLACPY, CLAHQR, CLARF,
 | 
						|
     $                   CLARFG, CLASET, CTREXC, CUNMHR, SLABAD
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, INT, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     ==== Estimate optimal workspace. ====
 | 
						|
*
 | 
						|
      JW = MIN( NW, KBOT-KTOP+1 )
 | 
						|
      IF( JW.LE.2 ) THEN
 | 
						|
         LWKOPT = 1
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        ==== Workspace query call to CGEHRD ====
 | 
						|
*
 | 
						|
         CALL CGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
 | 
						|
         LWK1 = INT( WORK( 1 ) )
 | 
						|
*
 | 
						|
*        ==== Workspace query call to CUNMHR ====
 | 
						|
*
 | 
						|
         CALL CUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
 | 
						|
     $                WORK, -1, INFO )
 | 
						|
         LWK2 = INT( WORK( 1 ) )
 | 
						|
*
 | 
						|
*        ==== Optimal workspace ====
 | 
						|
*
 | 
						|
         LWKOPT = JW + MAX( LWK1, LWK2 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ==== Quick return in case of workspace query. ====
 | 
						|
*
 | 
						|
      IF( LWORK.EQ.-1 ) THEN
 | 
						|
         WORK( 1 ) = CMPLX( LWKOPT, 0 )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ==== Nothing to do ...
 | 
						|
*     ... for an empty active block ... ====
 | 
						|
      NS = 0
 | 
						|
      ND = 0
 | 
						|
      WORK( 1 ) = ONE
 | 
						|
      IF( KTOP.GT.KBOT )
 | 
						|
     $   RETURN
 | 
						|
*     ... nor for an empty deflation window. ====
 | 
						|
      IF( NW.LT.1 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     ==== Machine constants ====
 | 
						|
*
 | 
						|
      SAFMIN = SLAMCH( 'SAFE MINIMUM' )
 | 
						|
      SAFMAX = RONE / SAFMIN
 | 
						|
      CALL SLABAD( SAFMIN, SAFMAX )
 | 
						|
      ULP = SLAMCH( 'PRECISION' )
 | 
						|
      SMLNUM = SAFMIN*( REAL( N ) / ULP )
 | 
						|
*
 | 
						|
*     ==== Setup deflation window ====
 | 
						|
*
 | 
						|
      JW = MIN( NW, KBOT-KTOP+1 )
 | 
						|
      KWTOP = KBOT - JW + 1
 | 
						|
      IF( KWTOP.EQ.KTOP ) THEN
 | 
						|
         S = ZERO
 | 
						|
      ELSE
 | 
						|
         S = H( KWTOP, KWTOP-1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( KBOT.EQ.KWTOP ) THEN
 | 
						|
*
 | 
						|
*        ==== 1-by-1 deflation window: not much to do ====
 | 
						|
*
 | 
						|
         SH( KWTOP ) = H( KWTOP, KWTOP )
 | 
						|
         NS = 1
 | 
						|
         ND = 0
 | 
						|
         IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
 | 
						|
     $       KWTOP ) ) ) ) THEN
 | 
						|
            NS = 0
 | 
						|
            ND = 1
 | 
						|
            IF( KWTOP.GT.KTOP )
 | 
						|
     $         H( KWTOP, KWTOP-1 ) = ZERO
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ==== Convert to spike-triangular form.  (In case of a
 | 
						|
*     .    rare QR failure, this routine continues to do
 | 
						|
*     .    aggressive early deflation using that part of
 | 
						|
*     .    the deflation window that converged using INFQR
 | 
						|
*     .    here and there to keep track.) ====
 | 
						|
*
 | 
						|
      CALL CLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
 | 
						|
      CALL CCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
 | 
						|
*
 | 
						|
      CALL CLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
 | 
						|
      CALL CLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
 | 
						|
     $             JW, V, LDV, INFQR )
 | 
						|
*
 | 
						|
*     ==== Deflation detection loop ====
 | 
						|
*
 | 
						|
      NS = JW
 | 
						|
      ILST = INFQR + 1
 | 
						|
      DO 10 KNT = INFQR + 1, JW
 | 
						|
*
 | 
						|
*        ==== Small spike tip deflation test ====
 | 
						|
*
 | 
						|
         FOO = CABS1( T( NS, NS ) )
 | 
						|
         IF( FOO.EQ.RZERO )
 | 
						|
     $      FOO = CABS1( S )
 | 
						|
         IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
 | 
						|
     $        THEN
 | 
						|
*
 | 
						|
*           ==== One more converged eigenvalue ====
 | 
						|
*
 | 
						|
            NS = NS - 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           ==== One undeflatable eigenvalue.  Move it up out of the
 | 
						|
*           .    way.   (CTREXC can not fail in this case.) ====
 | 
						|
*
 | 
						|
            IFST = NS
 | 
						|
            CALL CTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
 | 
						|
            ILST = ILST + 1
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*        ==== Return to Hessenberg form ====
 | 
						|
*
 | 
						|
      IF( NS.EQ.0 )
 | 
						|
     $   S = ZERO
 | 
						|
*
 | 
						|
      IF( NS.LT.JW ) THEN
 | 
						|
*
 | 
						|
*        ==== sorting the diagonal of T improves accuracy for
 | 
						|
*        .    graded matrices.  ====
 | 
						|
*
 | 
						|
         DO 30 I = INFQR + 1, NS
 | 
						|
            IFST = I
 | 
						|
            DO 20 J = I + 1, NS
 | 
						|
               IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
 | 
						|
     $            IFST = J
 | 
						|
   20       CONTINUE
 | 
						|
            ILST = I
 | 
						|
            IF( IFST.NE.ILST )
 | 
						|
     $         CALL CTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
 | 
						|
   30    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ==== Restore shift/eigenvalue array from T ====
 | 
						|
*
 | 
						|
      DO 40 I = INFQR + 1, JW
 | 
						|
         SH( KWTOP+I-1 ) = T( I, I )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*
 | 
						|
      IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
 | 
						|
         IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*           ==== Reflect spike back into lower triangle ====
 | 
						|
*
 | 
						|
            CALL CCOPY( NS, V, LDV, WORK, 1 )
 | 
						|
            DO 50 I = 1, NS
 | 
						|
               WORK( I ) = CONJG( WORK( I ) )
 | 
						|
   50       CONTINUE
 | 
						|
            BETA = WORK( 1 )
 | 
						|
            CALL CLARFG( NS, BETA, WORK( 2 ), 1, TAU )
 | 
						|
            WORK( 1 ) = ONE
 | 
						|
*
 | 
						|
            CALL CLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
 | 
						|
*
 | 
						|
            CALL CLARF( 'L', NS, JW, WORK, 1, CONJG( TAU ), T, LDT,
 | 
						|
     $                  WORK( JW+1 ) )
 | 
						|
            CALL CLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
 | 
						|
     $                  WORK( JW+1 ) )
 | 
						|
            CALL CLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
 | 
						|
     $                  WORK( JW+1 ) )
 | 
						|
*
 | 
						|
            CALL CGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
 | 
						|
     $                   LWORK-JW, INFO )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        ==== Copy updated reduced window into place ====
 | 
						|
*
 | 
						|
         IF( KWTOP.GT.1 )
 | 
						|
     $      H( KWTOP, KWTOP-1 ) = S*CONJG( V( 1, 1 ) )
 | 
						|
         CALL CLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
 | 
						|
         CALL CCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
 | 
						|
     $               LDH+1 )
 | 
						|
*
 | 
						|
*        ==== Accumulate orthogonal matrix in order update
 | 
						|
*        .    H and Z, if requested.  ====
 | 
						|
*
 | 
						|
         IF( NS.GT.1 .AND. S.NE.ZERO )
 | 
						|
     $      CALL CUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
 | 
						|
     $                   WORK( JW+1 ), LWORK-JW, INFO )
 | 
						|
*
 | 
						|
*        ==== Update vertical slab in H ====
 | 
						|
*
 | 
						|
         IF( WANTT ) THEN
 | 
						|
            LTOP = 1
 | 
						|
         ELSE
 | 
						|
            LTOP = KTOP
 | 
						|
         END IF
 | 
						|
         DO 60 KROW = LTOP, KWTOP - 1, NV
 | 
						|
            KLN = MIN( NV, KWTOP-KROW )
 | 
						|
            CALL CGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
 | 
						|
     $                  LDH, V, LDV, ZERO, WV, LDWV )
 | 
						|
            CALL CLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        ==== Update horizontal slab in H ====
 | 
						|
*
 | 
						|
         IF( WANTT ) THEN
 | 
						|
            DO 70 KCOL = KBOT + 1, N, NH
 | 
						|
               KLN = MIN( NH, N-KCOL+1 )
 | 
						|
               CALL CGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
 | 
						|
     $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
 | 
						|
               CALL CLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
 | 
						|
     $                      LDH )
 | 
						|
   70       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        ==== Update vertical slab in Z ====
 | 
						|
*
 | 
						|
         IF( WANTZ ) THEN
 | 
						|
            DO 80 KROW = ILOZ, IHIZ, NV
 | 
						|
               KLN = MIN( NV, IHIZ-KROW+1 )
 | 
						|
               CALL CGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
 | 
						|
     $                     LDZ, V, LDV, ZERO, WV, LDWV )
 | 
						|
               CALL CLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
 | 
						|
     $                      LDZ )
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ==== Return the number of deflations ... ====
 | 
						|
*
 | 
						|
      ND = JW - NS
 | 
						|
*
 | 
						|
*     ==== ... and the number of shifts. (Subtracting
 | 
						|
*     .    INFQR from the spike length takes care
 | 
						|
*     .    of the case of a rare QR failure while
 | 
						|
*     .    calculating eigenvalues of the deflation
 | 
						|
*     .    window.)  ====
 | 
						|
*
 | 
						|
      NS = NS - INFQR
 | 
						|
*
 | 
						|
*      ==== Return optimal workspace. ====
 | 
						|
*
 | 
						|
      WORK( 1 ) = CMPLX( LWKOPT, 0 )
 | 
						|
*
 | 
						|
*     ==== End of CLAQR2 ====
 | 
						|
*
 | 
						|
      END
 |