328 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE DSYR2KF( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,
 | |
|      $                   BETA, C, LDC )
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER*1        UPLO, TRANS
 | |
|       INTEGER            N, K, LDA, LDB, LDC
 | |
|       DOUBLE PRECISION   ALPHA, BETA
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  DSYR2K  performs one of the symmetric rank 2k operations
 | |
| *
 | |
| *     C := alpha*A*B' + alpha*B*A' + beta*C,
 | |
| *
 | |
| *  or
 | |
| *
 | |
| *     C := alpha*A'*B + alpha*B'*A + beta*C,
 | |
| *
 | |
| *  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
 | |
| *  and  A and B  are  n by k  matrices  in the  first  case  and  k by n
 | |
| *  matrices in the second case.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | |
| *           triangular  part  of the  array  C  is to be  referenced  as
 | |
| *           follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry,  TRANS  specifies the operation to be performed as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'   C := alpha*A*B' + alpha*B*A' +
 | |
| *                                        beta*C.
 | |
| *
 | |
| *              TRANS = 'T' or 't'   C := alpha*A'*B + alpha*B'*A +
 | |
| *                                        beta*C.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'   C := alpha*A'*B + alpha*B'*A +
 | |
| *                                        beta*C.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry,  N specifies the order of the matrix C.  N must be
 | |
| *           at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  K      - INTEGER.
 | |
| *           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
 | |
| *           of  columns  of the  matrices  A and B,  and on  entry  with
 | |
| *           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
 | |
| *           of rows of the matrices  A and B.  K must be at least  zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - DOUBLE PRECISION.
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
 | |
| *           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | |
| *           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | |
| *           part of the array  A  must contain the matrix  A,  otherwise
 | |
| *           the leading  k by n  part of the array  A  must contain  the
 | |
| *           matrix A.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | |
| *           then  LDA must be at least  max( 1, n ), otherwise  LDA must
 | |
| *           be at least  max( 1, k ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
 | |
| *           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | |
| *           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | |
| *           part of the array  B  must contain the matrix  B,  otherwise
 | |
| *           the leading  k by n  part of the array  B  must contain  the
 | |
| *           matrix B.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDB    - INTEGER.
 | |
| *           On entry, LDB specifies the first dimension of B as declared
 | |
| *           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | |
| *           then  LDB must be at least  max( 1, n ), otherwise  LDB must
 | |
| *           be at least  max( 1, k ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - DOUBLE PRECISION.
 | |
| *           On entry, BETA specifies the scalar beta.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
 | |
| *           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
 | |
| *           upper triangular part of the array C must contain the upper
 | |
| *           triangular part  of the  symmetric matrix  and the strictly
 | |
| *           lower triangular part of C is not referenced.  On exit, the
 | |
| *           upper triangular part of the array  C is overwritten by the
 | |
| *           upper triangular part of the updated matrix.
 | |
| *           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
 | |
| *           lower triangular part of the array C must contain the lower
 | |
| *           triangular part  of the  symmetric matrix  and the strictly
 | |
| *           upper triangular part of C is not referenced.  On exit, the
 | |
| *           lower triangular part of the array  C is overwritten by the
 | |
| *           lower triangular part of the updated matrix.
 | |
| *
 | |
| *  LDC    - INTEGER.
 | |
| *           On entry, LDC specifies the first dimension of C as declared
 | |
| *           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | |
| *           max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 3 Blas routine.
 | |
| *
 | |
| *
 | |
| *  -- Written on 8-February-1989.
 | |
| *     Jack Dongarra, Argonne National Laboratory.
 | |
| *     Iain Duff, AERE Harwell.
 | |
| *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, INFO, J, L, NROWA
 | |
|       DOUBLE PRECISION   TEMP1, TEMP2
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE         , ZERO
 | |
|       PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) )THEN
 | |
|          NROWA = N
 | |
|       ELSE
 | |
|          NROWA = K
 | |
|       END IF
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF(      ( .NOT.UPPER               ).AND.
 | |
|      $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
 | |
|      $         ( .NOT.LSAME( TRANS, 'T' ) ).AND.
 | |
|      $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( N  .LT.0               )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( K  .LT.0               )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
 | |
|          INFO = 7
 | |
|       ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
 | |
|          INFO = 9
 | |
|       ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
 | |
|          INFO = 12
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'DSYR2K', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ).OR.
 | |
|      $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF( ALPHA.EQ.ZERO )THEN
 | |
|          IF( UPPER )THEN
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 20, J = 1, N
 | |
|                   DO 10, I = 1, J
 | |
|                      C( I, J ) = ZERO
 | |
|    10             CONTINUE
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                DO 40, J = 1, N
 | |
|                   DO 30, I = 1, J
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|    30             CONTINUE
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 60, J = 1, N
 | |
|                   DO 50, I = J, N
 | |
|                      C( I, J ) = ZERO
 | |
|    50             CONTINUE
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                DO 80, J = 1, N
 | |
|                   DO 70, I = J, N
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|    70             CONTINUE
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) )THEN
 | |
| *
 | |
| *        Form  C := alpha*A*B' + alpha*B*A' + C.
 | |
| *
 | |
|          IF( UPPER )THEN
 | |
|             DO 130, J = 1, N
 | |
|                IF( BETA.EQ.ZERO )THEN
 | |
|                   DO 90, I = 1, J
 | |
|                      C( I, J ) = ZERO
 | |
|    90             CONTINUE
 | |
|                ELSE IF( BETA.NE.ONE )THEN
 | |
|                   DO 100, I = 1, J
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|   100             CONTINUE
 | |
|                END IF
 | |
|                DO 120, L = 1, K
 | |
|                   IF( ( A( J, L ).NE.ZERO ).OR.
 | |
|      $                ( B( J, L ).NE.ZERO )     )THEN
 | |
|                      TEMP1 = ALPHA*B( J, L )
 | |
|                      TEMP2 = ALPHA*A( J, L )
 | |
|                      DO 110, I = 1, J
 | |
|                         C( I, J ) = C( I, J ) +
 | |
|      $                              A( I, L )*TEMP1 + B( I, L )*TEMP2
 | |
|   110                CONTINUE
 | |
|                   END IF
 | |
|   120          CONTINUE
 | |
|   130       CONTINUE
 | |
|          ELSE
 | |
|             DO 180, J = 1, N
 | |
|                IF( BETA.EQ.ZERO )THEN
 | |
|                   DO 140, I = J, N
 | |
|                      C( I, J ) = ZERO
 | |
|   140             CONTINUE
 | |
|                ELSE IF( BETA.NE.ONE )THEN
 | |
|                   DO 150, I = J, N
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|   150             CONTINUE
 | |
|                END IF
 | |
|                DO 170, L = 1, K
 | |
|                   IF( ( A( J, L ).NE.ZERO ).OR.
 | |
|      $                ( B( J, L ).NE.ZERO )     )THEN
 | |
|                      TEMP1 = ALPHA*B( J, L )
 | |
|                      TEMP2 = ALPHA*A( J, L )
 | |
|                      DO 160, I = J, N
 | |
|                         C( I, J ) = C( I, J ) +
 | |
|      $                              A( I, L )*TEMP1 + B( I, L )*TEMP2
 | |
|   160                CONTINUE
 | |
|                   END IF
 | |
|   170          CONTINUE
 | |
|   180       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  C := alpha*A'*B + alpha*B'*A + C.
 | |
| *
 | |
|          IF( UPPER )THEN
 | |
|             DO 210, J = 1, N
 | |
|                DO 200, I = 1, J
 | |
|                   TEMP1 = ZERO
 | |
|                   TEMP2 = ZERO
 | |
|                   DO 190, L = 1, K
 | |
|                      TEMP1 = TEMP1 + A( L, I )*B( L, J )
 | |
|                      TEMP2 = TEMP2 + B( L, I )*A( L, J )
 | |
|   190             CONTINUE
 | |
|                   IF( BETA.EQ.ZERO )THEN
 | |
|                      C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
 | |
|                   ELSE
 | |
|                      C( I, J ) = BETA *C( I, J ) +
 | |
|      $                           ALPHA*TEMP1 + ALPHA*TEMP2
 | |
|                   END IF
 | |
|   200          CONTINUE
 | |
|   210       CONTINUE
 | |
|          ELSE
 | |
|             DO 240, J = 1, N
 | |
|                DO 230, I = J, N
 | |
|                   TEMP1 = ZERO
 | |
|                   TEMP2 = ZERO
 | |
|                   DO 220, L = 1, K
 | |
|                      TEMP1 = TEMP1 + A( L, I )*B( L, J )
 | |
|                      TEMP2 = TEMP2 + B( L, I )*A( L, J )
 | |
|   220             CONTINUE
 | |
|                   IF( BETA.EQ.ZERO )THEN
 | |
|                      C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
 | |
|                   ELSE
 | |
|                      C( I, J ) = BETA *C( I, J ) +
 | |
|      $                           ALPHA*TEMP1 + ALPHA*TEMP2
 | |
|                   END IF
 | |
|   230          CONTINUE
 | |
|   240       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSYR2K.
 | |
| *
 | |
|       END
 |