365 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			365 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGEQP3
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGEQP3 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqp3.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqp3.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqp3.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            JPVT( * )
 | |
| *       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGEQP3 computes a QR factorization with column pivoting of a
 | |
| *> matrix A:  A*P = Q*R  using Level 3 BLAS.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, the upper triangle of the array contains the
 | |
| *>          min(M,N)-by-N upper trapezoidal matrix R; the elements below
 | |
| *>          the diagonal, together with the array TAU, represent the
 | |
| *>          orthogonal matrix Q as a product of min(M,N) elementary
 | |
| *>          reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] JPVT
 | |
| *> \verbatim
 | |
| *>          JPVT is INTEGER array, dimension (N)
 | |
| *>          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
 | |
| *>          to the front of A*P (a leading column); if JPVT(J)=0,
 | |
| *>          the J-th column of A is a free column.
 | |
| *>          On exit, if JPVT(J)=K, then the J-th column of A*P was the
 | |
| *>          the K-th column of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= 3*N+1.
 | |
| *>          For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
 | |
| *>          is the optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit.
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real/complex vector
 | |
| *>  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
 | |
| *>  A(i+1:m,i), and tau in TAU(i).
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
 | |
| *>    X. Sun, Computer Science Dept., Duke University, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            JPVT( * )
 | |
|       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            INB, INBMIN, IXOVER
 | |
|       PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
 | |
|      $                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEQRF, SLAQP2, SLAQPS, SORMQR, SSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SNRM2
 | |
|       EXTERNAL           ILAENV, SNRM2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          INT, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          MINMN = MIN( M, N )
 | |
|          IF( MINMN.EQ.0 ) THEN
 | |
|             IWS = 1
 | |
|             LWKOPT = 1
 | |
|          ELSE
 | |
|             IWS = 3*N + 1
 | |
|             NB = ILAENV( INB, 'SGEQRF', ' ', M, N, -1, -1 )
 | |
|             LWKOPT = 2*N + ( N + 1 )*NB
 | |
|          END IF
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -8
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGEQP3', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( MINMN.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Move initial columns up front.
 | |
| *
 | |
|       NFXD = 1
 | |
|       DO 10 J = 1, N
 | |
|          IF( JPVT( J ).NE.0 ) THEN
 | |
|             IF( J.NE.NFXD ) THEN
 | |
|                CALL SSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
 | |
|                JPVT( J ) = JPVT( NFXD )
 | |
|                JPVT( NFXD ) = J
 | |
|             ELSE
 | |
|                JPVT( J ) = J
 | |
|             END IF
 | |
|             NFXD = NFXD + 1
 | |
|          ELSE
 | |
|             JPVT( J ) = J
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       NFXD = NFXD - 1
 | |
| *
 | |
| *     Factorize fixed columns
 | |
| *  =======================
 | |
| *
 | |
| *     Compute the QR factorization of fixed columns and update
 | |
| *     remaining columns.
 | |
| *
 | |
|       IF( NFXD.GT.0 ) THEN
 | |
|          NA = MIN( M, NFXD )
 | |
| *CC      CALL SGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
 | |
|          CALL SGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
 | |
|          IWS = MAX( IWS, INT( WORK( 1 ) ) )
 | |
|          IF( NA.LT.N ) THEN
 | |
| *CC         CALL SORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA,
 | |
| *CC  $                   TAU, A( 1, NA+1 ), LDA, WORK, INFO )
 | |
|             CALL SORMQR( 'Left', 'Transpose', M, N-NA, NA, A, LDA, TAU,
 | |
|      $                   A( 1, NA+1 ), LDA, WORK, LWORK, INFO )
 | |
|             IWS = MAX( IWS, INT( WORK( 1 ) ) )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Factorize free columns
 | |
| *  ======================
 | |
| *
 | |
|       IF( NFXD.LT.MINMN ) THEN
 | |
| *
 | |
|          SM = M - NFXD
 | |
|          SN = N - NFXD
 | |
|          SMINMN = MINMN - NFXD
 | |
| *
 | |
| *        Determine the block size.
 | |
| *
 | |
|          NB = ILAENV( INB, 'SGEQRF', ' ', SM, SN, -1, -1 )
 | |
|          NBMIN = 2
 | |
|          NX = 0
 | |
| *
 | |
|          IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
 | |
| *
 | |
| *           Determine when to cross over from blocked to unblocked code.
 | |
| *
 | |
|             NX = MAX( 0, ILAENV( IXOVER, 'SGEQRF', ' ', SM, SN, -1,
 | |
|      $           -1 ) )
 | |
| *
 | |
| *
 | |
|             IF( NX.LT.SMINMN ) THEN
 | |
| *
 | |
| *              Determine if workspace is large enough for blocked code.
 | |
| *
 | |
|                MINWS = 2*SN + ( SN+1 )*NB
 | |
|                IWS = MAX( IWS, MINWS )
 | |
|                IF( LWORK.LT.MINWS ) THEN
 | |
| *
 | |
| *                 Not enough workspace to use optimal NB: Reduce NB and
 | |
| *                 determine the minimum value of NB.
 | |
| *
 | |
|                   NB = ( LWORK-2*SN ) / ( SN+1 )
 | |
|                   NBMIN = MAX( 2, ILAENV( INBMIN, 'SGEQRF', ' ', SM, SN,
 | |
|      $                    -1, -1 ) )
 | |
| *
 | |
| *
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Initialize partial column norms. The first N elements of work
 | |
| *        store the exact column norms.
 | |
| *
 | |
|          DO 20 J = NFXD + 1, N
 | |
|             WORK( J ) = SNRM2( SM, A( NFXD+1, J ), 1 )
 | |
|             WORK( N+J ) = WORK( J )
 | |
|    20    CONTINUE
 | |
| *
 | |
|          IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
 | |
|      $       ( NX.LT.SMINMN ) ) THEN
 | |
| *
 | |
| *           Use blocked code initially.
 | |
| *
 | |
|             J = NFXD + 1
 | |
| *
 | |
| *           Compute factorization: while loop.
 | |
| *
 | |
| *
 | |
|             TOPBMN = MINMN - NX
 | |
|    30       CONTINUE
 | |
|             IF( J.LE.TOPBMN ) THEN
 | |
|                JB = MIN( NB, TOPBMN-J+1 )
 | |
| *
 | |
| *              Factorize JB columns among columns J:N.
 | |
| *
 | |
|                CALL SLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
 | |
|      $                      JPVT( J ), TAU( J ), WORK( J ), WORK( N+J ),
 | |
|      $                      WORK( 2*N+1 ), WORK( 2*N+JB+1 ), N-J+1 )
 | |
| *
 | |
|                J = J + FJB
 | |
|                GO TO 30
 | |
|             END IF
 | |
|          ELSE
 | |
|             J = NFXD + 1
 | |
|          END IF
 | |
| *
 | |
| *        Use unblocked code to factor the last or only block.
 | |
| *
 | |
| *
 | |
|          IF( J.LE.MINMN )
 | |
|      $      CALL SLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
 | |
|      $                   TAU( J ), WORK( J ), WORK( N+J ),
 | |
|      $                   WORK( 2*N+1 ) )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = IWS
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGEQP3
 | |
| *
 | |
|       END
 |