496 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			496 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download STFTTR + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stfttr.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stfttr.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stfttr.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANSR, UPLO
 | |
| *       INTEGER            INFO, N, LDA
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( 0: LDA-1, 0: * ), ARF( 0: * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STFTTR copies a triangular matrix A from rectangular full packed
 | |
| *> format (TF) to standard full format (TR).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANSR
 | |
| *> \verbatim
 | |
| *>          TRANSR is CHARACTER*1
 | |
| *>          = 'N':  ARF is in Normal format;
 | |
| *>          = 'T':  ARF is in Transpose format.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  A is upper triangular;
 | |
| *>          = 'L':  A is lower triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices ARF and A. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ARF
 | |
| *> \verbatim
 | |
| *>          ARF is REAL array, dimension (N*(N+1)/2).
 | |
| *>          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
 | |
| *>          matrix A in RFP format. See the "Notes" below for more
 | |
| *>          details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On exit, the triangular matrix A.  If UPLO = 'U', the
 | |
| *>          leading N-by-N upper triangular part of the array A contains
 | |
| *>          the upper triangular matrix, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading N-by-N lower triangular part of the array A contains
 | |
| *>          the lower triangular matrix, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  We first consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  even. We give an example where N = 6.
 | |
| *>
 | |
| *>      AP is Upper             AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04 05       00
 | |
| *>      11 12 13 14 15       10 11
 | |
| *>         22 23 24 25       20 21 22
 | |
| *>            33 34 35       30 31 32 33
 | |
| *>               44 45       40 41 42 43 44
 | |
| *>                  55       50 51 52 53 54 55
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | |
| *>  the transpose of the first three columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | |
| *>  the transpose of the last three columns of AP lower.
 | |
| *>  This covers the case N even and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        03 04 05                33 43 53
 | |
| *>        13 14 15                00 44 54
 | |
| *>        23 24 25                10 11 55
 | |
| *>        33 34 35                20 21 22
 | |
| *>        00 44 45                30 31 32
 | |
| *>        01 11 55                40 41 42
 | |
| *>        02 12 22                50 51 52
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | |
| *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | |
| *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | |
| *>
 | |
| *>
 | |
| *>  We then consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  odd. We give an example where N = 5.
 | |
| *>
 | |
| *>     AP is Upper                 AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04              00
 | |
| *>      11 12 13 14              10 11
 | |
| *>         22 23 24              20 21 22
 | |
| *>            33 34              30 31 32 33
 | |
| *>               44              40 41 42 43 44
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | |
| *>  the transpose of the first two columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | |
| *>  the transpose of the last two columns of AP lower.
 | |
| *>  This covers the case N odd and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        02 03 04                00 33 43
 | |
| *>        12 13 14                10 11 44
 | |
| *>        22 23 24                20 21 22
 | |
| *>        00 33 34                30 31 32
 | |
| *>        01 11 44                40 41 42
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     02 12 22 00 01             00 10 20 30 40 50
 | |
| *>     03 13 23 33 11             33 11 21 31 41 51
 | |
| *>     04 14 24 34 44             43 44 22 32 42 52
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANSR, UPLO
 | |
|       INTEGER            INFO, N, LDA
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( 0: LDA-1, 0: * ), ARF( 0: * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER, NISODD, NORMALTRANSR
 | |
|       INTEGER            N1, N2, K, NT, NX2, NP1X2
 | |
|       INTEGER            I, J, L, IJ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MOD
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NORMALTRANSR = LSAME( TRANSR, 'N' )
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'STFTTR', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.1 ) THEN
 | |
|          IF( N.EQ.1 ) THEN
 | |
|             A( 0, 0 ) = ARF( 0 )
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Size of array ARF(0:nt-1)
 | |
| *
 | |
|       NT = N*( N+1 ) / 2
 | |
| *
 | |
| *     set N1 and N2 depending on LOWER: for N even N1=N2=K
 | |
| *
 | |
|       IF( LOWER ) THEN
 | |
|          N2 = N / 2
 | |
|          N1 = N - N2
 | |
|       ELSE
 | |
|          N1 = N / 2
 | |
|          N2 = N - N1
 | |
|       END IF
 | |
| *
 | |
| *     If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
 | |
| *     If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
 | |
| *     N--by--(N+1)/2.
 | |
| *
 | |
|       IF( MOD( N, 2 ).EQ.0 ) THEN
 | |
|          K = N / 2
 | |
|          NISODD = .FALSE.
 | |
|          IF( .NOT.LOWER )
 | |
|      $      NP1X2 = N + N + 2
 | |
|       ELSE
 | |
|          NISODD = .TRUE.
 | |
|          IF( .NOT.LOWER )
 | |
|      $      NX2 = N + N
 | |
|       END IF
 | |
| *
 | |
|       IF( NISODD ) THEN
 | |
| *
 | |
| *        N is odd
 | |
| *
 | |
|          IF( NORMALTRANSR ) THEN
 | |
| *
 | |
| *           N is odd and TRANSR = 'N'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              N is odd, TRANSR = 'N', and UPLO = 'L'
 | |
| *
 | |
|                IJ = 0
 | |
|                DO J = 0, N2
 | |
|                   DO I = N1, N2 + J
 | |
|                      A( N2+J, I ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   DO I = J, N - 1
 | |
|                      A( I, J ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              N is odd, TRANSR = 'N', and UPLO = 'U'
 | |
| *
 | |
|                IJ = NT - N
 | |
|                DO J = N - 1, N1, -1
 | |
|                   DO I = 0, J
 | |
|                      A( I, J ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   DO L = J - N1, N1 - 1
 | |
|                      A( J-N1, L ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   IJ = IJ - NX2
 | |
|                END DO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           N is odd and TRANSR = 'T'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              N is odd, TRANSR = 'T', and UPLO = 'L'
 | |
| *
 | |
|                IJ = 0
 | |
|                DO J = 0, N2 - 1
 | |
|                   DO I = 0, J
 | |
|                      A( J, I ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   DO I = N1 + J, N - 1
 | |
|                      A( I, N1+J ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
|                DO J = N2, N - 1
 | |
|                   DO I = 0, N1 - 1
 | |
|                      A( J, I ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              N is odd, TRANSR = 'T', and UPLO = 'U'
 | |
| *
 | |
|                IJ = 0
 | |
|                DO J = 0, N1
 | |
|                   DO I = N1, N - 1
 | |
|                      A( J, I ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
|                DO J = 0, N1 - 1
 | |
|                   DO I = 0, J
 | |
|                      A( I, J ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   DO L = N2 + J, N - 1
 | |
|                      A( N2+J, L ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        N is even
 | |
| *
 | |
|          IF( NORMALTRANSR ) THEN
 | |
| *
 | |
| *           N is even and TRANSR = 'N'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              N is even, TRANSR = 'N', and UPLO = 'L'
 | |
| *
 | |
|                IJ = 0
 | |
|                DO J = 0, K - 1
 | |
|                   DO I = K, K + J
 | |
|                      A( K+J, I ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   DO I = J, N - 1
 | |
|                      A( I, J ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              N is even, TRANSR = 'N', and UPLO = 'U'
 | |
| *
 | |
|                IJ = NT - N - 1
 | |
|                DO J = N - 1, K, -1
 | |
|                   DO I = 0, J
 | |
|                      A( I, J ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   DO L = J - K, K - 1
 | |
|                      A( J-K, L ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   IJ = IJ - NP1X2
 | |
|                END DO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           N is even and TRANSR = 'T'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              N is even, TRANSR = 'T', and UPLO = 'L'
 | |
| *
 | |
|                IJ = 0
 | |
|                J = K
 | |
|                DO I = K, N - 1
 | |
|                   A( I, J ) = ARF( IJ )
 | |
|                   IJ = IJ + 1
 | |
|                END DO
 | |
|                DO J = 0, K - 2
 | |
|                   DO I = 0, J
 | |
|                      A( J, I ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   DO I = K + 1 + J, N - 1
 | |
|                      A( I, K+1+J ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
|                DO J = K - 1, N - 1
 | |
|                   DO I = 0, K - 1
 | |
|                      A( J, I ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              N is even, TRANSR = 'T', and UPLO = 'U'
 | |
| *
 | |
|                IJ = 0
 | |
|                DO J = 0, K
 | |
|                   DO I = K, N - 1
 | |
|                      A( J, I ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
|                DO J = 0, K - 2
 | |
|                   DO I = 0, J
 | |
|                      A( I, J ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                   DO L = K + 1 + J, N - 1
 | |
|                      A( K+1+J, L ) = ARF( IJ )
 | |
|                      IJ = IJ + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *              Note that here, on exit of the loop, J = K-1
 | |
|                DO I = 0, J
 | |
|                   A( I, J ) = ARF( IJ )
 | |
|                   IJ = IJ + 1
 | |
|                END DO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STFTTR
 | |
| *
 | |
|       END
 |