377 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			377 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSYTRD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSYTRD + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrd.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrd.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrd.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), D( * ), E( * ), TAU( * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSYTRD reduces a real symmetric matrix A to real symmetric
 | |
| *> tridiagonal form T by an orthogonal similarity transformation:
 | |
| *> Q**T * A * Q = T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          N-by-N upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading N-by-N lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
 | |
| *>          of A are overwritten by the corresponding elements of the
 | |
| *>          tridiagonal matrix T, and the elements above the first
 | |
| *>          superdiagonal, with the array TAU, represent the orthogonal
 | |
| *>          matrix Q as a product of elementary reflectors; if UPLO
 | |
| *>          = 'L', the diagonal and first subdiagonal of A are over-
 | |
| *>          written by the corresponding elements of the tridiagonal
 | |
| *>          matrix T, and the elements below the first subdiagonal, with
 | |
| *>          the array TAU, represent the orthogonal matrix Q as a product
 | |
| *>          of elementary reflectors. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The diagonal elements of the tridiagonal matrix T:
 | |
| *>          D(i) = A(i,i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          The off-diagonal elements of the tridiagonal matrix T:
 | |
| *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (N-1)
 | |
| *>          The scalar factors of the elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= 1.
 | |
| *>          For optimum performance LWORK >= N*NB, where NB is the
 | |
| *>          optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup realSYcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(n-1) . . . H(2) H(1).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real vector with
 | |
| *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
 | |
| *>  A(1:i-1,i+1), and tau in TAU(i).
 | |
| *>
 | |
| *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(n-1).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real vector with
 | |
| *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
 | |
| *>  and tau in TAU(i).
 | |
| *>
 | |
| *>  The contents of A on exit are illustrated by the following examples
 | |
| *>  with n = 5:
 | |
| *>
 | |
| *>  if UPLO = 'U':                       if UPLO = 'L':
 | |
| *>
 | |
| *>    (  d   e   v2  v3  v4 )              (  d                  )
 | |
| *>    (      d   e   v3  v4 )              (  e   d              )
 | |
| *>    (          d   e   v4 )              (  v1  e   d          )
 | |
| *>    (              d   e  )              (  v1  v2  e   d      )
 | |
| *>    (                  d  )              (  v1  v2  v3  e   d  )
 | |
| *>
 | |
| *>  where d and e denote diagonal and off-diagonal elements of T, and vi
 | |
| *>  denotes an element of the vector defining H(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), D( * ), E( * ), TAU( * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, UPPER
 | |
|       INTEGER            I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
 | |
|      $                   NBMIN, NX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLATRD, SSYR2K, SSYTD2, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           LSAME, ILAENV
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
| *        Determine the block size.
 | |
| *
 | |
|          NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
 | |
|          LWKOPT = N*NB
 | |
|          WORK( 1 ) = LWKOPT
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSYTRD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          WORK( 1 ) = 1
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       NX = N
 | |
|       IWS = 1
 | |
|       IF( NB.GT.1 .AND. NB.LT.N ) THEN
 | |
| *
 | |
| *        Determine when to cross over from blocked to unblocked code
 | |
| *        (last block is always handled by unblocked code).
 | |
| *
 | |
|          NX = MAX( NB, ILAENV( 3, 'SSYTRD', UPLO, N, -1, -1, -1 ) )
 | |
|          IF( NX.LT.N ) THEN
 | |
| *
 | |
| *           Determine if workspace is large enough for blocked code.
 | |
| *
 | |
|             LDWORK = N
 | |
|             IWS = LDWORK*NB
 | |
|             IF( LWORK.LT.IWS ) THEN
 | |
| *
 | |
| *              Not enough workspace to use optimal NB:  determine the
 | |
| *              minimum value of NB, and reduce NB or force use of
 | |
| *              unblocked code by setting NX = N.
 | |
| *
 | |
|                NB = MAX( LWORK / LDWORK, 1 )
 | |
|                NBMIN = ILAENV( 2, 'SSYTRD', UPLO, N, -1, -1, -1 )
 | |
|                IF( NB.LT.NBMIN )
 | |
|      $            NX = N
 | |
|             END IF
 | |
|          ELSE
 | |
|             NX = N
 | |
|          END IF
 | |
|       ELSE
 | |
|          NB = 1
 | |
|       END IF
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Reduce the upper triangle of A.
 | |
| *        Columns 1:kk are handled by the unblocked method.
 | |
| *
 | |
|          KK = N - ( ( N-NX+NB-1 ) / NB )*NB
 | |
|          DO 20 I = N - NB + 1, KK + 1, -NB
 | |
| *
 | |
| *           Reduce columns i:i+nb-1 to tridiagonal form and form the
 | |
| *           matrix W which is needed to update the unreduced part of
 | |
| *           the matrix
 | |
| *
 | |
|             CALL SLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
 | |
|      $                   LDWORK )
 | |
| *
 | |
| *           Update the unreduced submatrix A(1:i-1,1:i-1), using an
 | |
| *           update of the form:  A := A - V*W**T - W*V**T
 | |
| *
 | |
|             CALL SSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ),
 | |
|      $                   LDA, WORK, LDWORK, ONE, A, LDA )
 | |
| *
 | |
| *           Copy superdiagonal elements back into A, and diagonal
 | |
| *           elements into D
 | |
| *
 | |
|             DO 10 J = I, I + NB - 1
 | |
|                A( J-1, J ) = E( J-1 )
 | |
|                D( J ) = A( J, J )
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        Use unblocked code to reduce the last or only block
 | |
| *
 | |
|          CALL SSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
 | |
|       ELSE
 | |
| *
 | |
| *        Reduce the lower triangle of A
 | |
| *
 | |
|          DO 40 I = 1, N - NX, NB
 | |
| *
 | |
| *           Reduce columns i:i+nb-1 to tridiagonal form and form the
 | |
| *           matrix W which is needed to update the unreduced part of
 | |
| *           the matrix
 | |
| *
 | |
|             CALL SLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
 | |
|      $                   TAU( I ), WORK, LDWORK )
 | |
| *
 | |
| *           Update the unreduced submatrix A(i+ib:n,i+ib:n), using
 | |
| *           an update of the form:  A := A - V*W**T - W*V**T
 | |
| *
 | |
|             CALL SSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE,
 | |
|      $                   A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
 | |
|      $                   A( I+NB, I+NB ), LDA )
 | |
| *
 | |
| *           Copy subdiagonal elements back into A, and diagonal
 | |
| *           elements into D
 | |
| *
 | |
|             DO 30 J = I, I + NB - 1
 | |
|                A( J+1, J ) = E( J )
 | |
|                D( J ) = A( J, J )
 | |
|    30       CONTINUE
 | |
|    40    CONTINUE
 | |
| *
 | |
| *        Use unblocked code to reduce the last or only block
 | |
| *
 | |
|          CALL SSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
 | |
|      $                TAU( I ), IINFO )
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSYTRD
 | |
| *
 | |
|       END
 |