869 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			869 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGGEVX + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggevx.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggevx.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggevx.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 | |
| *                          ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
 | |
| *                          IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
 | |
| *                          RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
 | |
| *       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | |
| *       DOUBLE PRECISION   ABNRM, BBNRM
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            BWORK( * )
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
| *      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
 | |
| *      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
 | |
| *      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
 | |
| *> the generalized eigenvalues, and optionally, the left and/or right
 | |
| *> generalized eigenvectors.
 | |
| *>
 | |
| *> Optionally also, it computes a balancing transformation to improve
 | |
| *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
 | |
| *> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
 | |
| *> the eigenvalues (RCONDE), and reciprocal condition numbers for the
 | |
| *> right eigenvectors (RCONDV).
 | |
| *>
 | |
| *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
 | |
| *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
 | |
| *> singular. It is usually represented as the pair (alpha,beta), as
 | |
| *> there is a reasonable interpretation for beta=0, and even for both
 | |
| *> being zero.
 | |
| *>
 | |
| *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
 | |
| *> of (A,B) satisfies
 | |
| *>
 | |
| *>                  A * v(j) = lambda(j) * B * v(j) .
 | |
| *>
 | |
| *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
 | |
| *> of (A,B) satisfies
 | |
| *>
 | |
| *>                  u(j)**H * A  = lambda(j) * u(j)**H * B.
 | |
| *>
 | |
| *> where u(j)**H is the conjugate-transpose of u(j).
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] BALANC
 | |
| *> \verbatim
 | |
| *>          BALANC is CHARACTER*1
 | |
| *>          Specifies the balance option to be performed.
 | |
| *>          = 'N':  do not diagonally scale or permute;
 | |
| *>          = 'P':  permute only;
 | |
| *>          = 'S':  scale only;
 | |
| *>          = 'B':  both permute and scale.
 | |
| *>          Computed reciprocal condition numbers will be for the
 | |
| *>          matrices after permuting and/or balancing. Permuting does
 | |
| *>          not change condition numbers (in exact arithmetic), but
 | |
| *>          balancing does.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVL
 | |
| *> \verbatim
 | |
| *>          JOBVL is CHARACTER*1
 | |
| *>          = 'N':  do not compute the left generalized eigenvectors;
 | |
| *>          = 'V':  compute the left generalized eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVR
 | |
| *> \verbatim
 | |
| *>          JOBVR is CHARACTER*1
 | |
| *>          = 'N':  do not compute the right generalized eigenvectors;
 | |
| *>          = 'V':  compute the right generalized eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SENSE
 | |
| *> \verbatim
 | |
| *>          SENSE is CHARACTER*1
 | |
| *>          Determines which reciprocal condition numbers are computed.
 | |
| *>          = 'N': none are computed;
 | |
| *>          = 'E': computed for eigenvalues only;
 | |
| *>          = 'V': computed for eigenvectors only;
 | |
| *>          = 'B': computed for eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A, B, VL, and VR.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA, N)
 | |
| *>          On entry, the matrix A in the pair (A,B).
 | |
| *>          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
 | |
| *>          or both, then A contains the first part of the real Schur
 | |
| *>          form of the "balanced" versions of the input A and B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB, N)
 | |
| *>          On entry, the matrix B in the pair (A,B).
 | |
| *>          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
 | |
| *>          or both, then B contains the second part of the real Schur
 | |
| *>          form of the "balanced" versions of the input A and B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
 | |
| *>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
 | |
| *>          the j-th eigenvalue is real; if positive, then the j-th and
 | |
| *>          (j+1)-st eigenvalues are a complex conjugate pair, with
 | |
| *>          ALPHAI(j+1) negative.
 | |
| *>
 | |
| *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
 | |
| *>          may easily over- or underflow, and BETA(j) may even be zero.
 | |
| *>          Thus, the user should avoid naively computing the ratio
 | |
| *>          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
 | |
| *>          than and usually comparable with norm(A) in magnitude, and
 | |
| *>          BETA always less than and usually comparable with norm(B).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
 | |
| *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
 | |
| *>          after another in the columns of VL, in the same order as
 | |
| *>          their eigenvalues. If the j-th eigenvalue is real, then
 | |
| *>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
 | |
| *>          (j+1)-th eigenvalues form a complex conjugate pair, then
 | |
| *>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
 | |
| *>          Each eigenvector will be scaled so the largest component have
 | |
| *>          abs(real part) + abs(imag. part) = 1.
 | |
| *>          Not referenced if JOBVL = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the matrix VL. LDVL >= 1, and
 | |
| *>          if JOBVL = 'V', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VR
 | |
| *> \verbatim
 | |
| *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
 | |
| *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
 | |
| *>          after another in the columns of VR, in the same order as
 | |
| *>          their eigenvalues. If the j-th eigenvalue is real, then
 | |
| *>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
 | |
| *>          (j+1)-th eigenvalues form a complex conjugate pair, then
 | |
| *>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
 | |
| *>          Each eigenvector will be scaled so the largest component have
 | |
| *>          abs(real part) + abs(imag. part) = 1.
 | |
| *>          Not referenced if JOBVR = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the matrix VR. LDVR >= 1, and
 | |
| *>          if JOBVR = 'V', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>          ILO and IHI are integer values such that on exit
 | |
| *>          A(i,j) = 0 and B(i,j) = 0 if i > j and
 | |
| *>          j = 1,...,ILO-1 or i = IHI+1,...,N.
 | |
| *>          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] LSCALE
 | |
| *> \verbatim
 | |
| *>          LSCALE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          Details of the permutations and scaling factors applied
 | |
| *>          to the left side of A and B.  If PL(j) is the index of the
 | |
| *>          row interchanged with row j, and DL(j) is the scaling
 | |
| *>          factor applied to row j, then
 | |
| *>            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
 | |
| *>                      = DL(j)  for j = ILO,...,IHI
 | |
| *>                      = PL(j)  for j = IHI+1,...,N.
 | |
| *>          The order in which the interchanges are made is N to IHI+1,
 | |
| *>          then 1 to ILO-1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RSCALE
 | |
| *> \verbatim
 | |
| *>          RSCALE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          Details of the permutations and scaling factors applied
 | |
| *>          to the right side of A and B.  If PR(j) is the index of the
 | |
| *>          column interchanged with column j, and DR(j) is the scaling
 | |
| *>          factor applied to column j, then
 | |
| *>            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
 | |
| *>                      = DR(j)  for j = ILO,...,IHI
 | |
| *>                      = PR(j)  for j = IHI+1,...,N
 | |
| *>          The order in which the interchanges are made is N to IHI+1,
 | |
| *>          then 1 to ILO-1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ABNRM
 | |
| *> \verbatim
 | |
| *>          ABNRM is DOUBLE PRECISION
 | |
| *>          The one-norm of the balanced matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BBNRM
 | |
| *> \verbatim
 | |
| *>          BBNRM is DOUBLE PRECISION
 | |
| *>          The one-norm of the balanced matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCONDE
 | |
| *> \verbatim
 | |
| *>          RCONDE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If SENSE = 'E' or 'B', the reciprocal condition numbers of
 | |
| *>          the eigenvalues, stored in consecutive elements of the array.
 | |
| *>          For a complex conjugate pair of eigenvalues two consecutive
 | |
| *>          elements of RCONDE are set to the same value. Thus RCONDE(j),
 | |
| *>          RCONDV(j), and the j-th columns of VL and VR all correspond
 | |
| *>          to the j-th eigenpair.
 | |
| *>          If SENSE = 'N or 'V', RCONDE is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCONDV
 | |
| *> \verbatim
 | |
| *>          RCONDV is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If SENSE = 'V' or 'B', the estimated reciprocal condition
 | |
| *>          numbers of the eigenvectors, stored in consecutive elements
 | |
| *>          of the array. For a complex eigenvector two consecutive
 | |
| *>          elements of RCONDV are set to the same value. If the
 | |
| *>          eigenvalues cannot be reordered to compute RCONDV(j),
 | |
| *>          RCONDV(j) is set to 0; this can only occur when the true
 | |
| *>          value would be very small anyway.
 | |
| *>          If SENSE = 'N' or 'E', RCONDV is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,2*N).
 | |
| *>          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
 | |
| *>          LWORK >= max(1,6*N).
 | |
| *>          If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
 | |
| *>          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N+6)
 | |
| *>          If SENSE = 'E', IWORK is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BWORK
 | |
| *> \verbatim
 | |
| *>          BWORK is LOGICAL array, dimension (N)
 | |
| *>          If SENSE = 'N', BWORK is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          = 1,...,N:
 | |
| *>                The QZ iteration failed.  No eigenvectors have been
 | |
| *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
 | |
| *>                should be correct for j=INFO+1,...,N.
 | |
| *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
 | |
| *>                =N+2: error return from DTGEVC.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date April 2012
 | |
| *
 | |
| *> \ingroup doubleGEeigen
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Balancing a matrix pair (A,B) includes, first, permuting rows and
 | |
| *>  columns to isolate eigenvalues, second, applying diagonal similarity
 | |
| *>  transformation to the rows and columns to make the rows and columns
 | |
| *>  as close in norm as possible. The computed reciprocal condition
 | |
| *>  numbers correspond to the balanced matrix. Permuting rows and columns
 | |
| *>  will not change the condition numbers (in exact arithmetic) but
 | |
| *>  diagonal scaling will.  For further explanation of balancing, see
 | |
| *>  section 4.11.1.2 of LAPACK Users' Guide.
 | |
| *>
 | |
| *>  An approximate error bound on the chordal distance between the i-th
 | |
| *>  computed generalized eigenvalue w and the corresponding exact
 | |
| *>  eigenvalue lambda is
 | |
| *>
 | |
| *>       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
 | |
| *>
 | |
| *>  An approximate error bound for the angle between the i-th computed
 | |
| *>  eigenvector VL(i) or VR(i) is given by
 | |
| *>
 | |
| *>       EPS * norm(ABNRM, BBNRM) / DIF(i).
 | |
| *>
 | |
| *>  For further explanation of the reciprocal condition numbers RCONDE
 | |
| *>  and RCONDV, see section 4.11 of LAPACK User's Guide.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 | |
|      $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
 | |
|      $                   IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
 | |
|      $                   RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     April 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
 | |
|       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | |
|       DOUBLE PRECISION   ABNRM, BBNRM
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            BWORK( * )
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
|      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
 | |
|      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
 | |
|      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
 | |
|      $                   PAIR, WANTSB, WANTSE, WANTSN, WANTSV
 | |
|       CHARACTER          CHTEMP
 | |
|       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
 | |
|      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK,
 | |
|      $                   MINWRK, MM
 | |
|       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
 | |
|      $                   SMLNUM, TEMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       LOGICAL            LDUMMA( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
 | |
|      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
 | |
|      $                   DTGSNA, XERBLA 
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode the input arguments
 | |
| *
 | |
|       IF( LSAME( JOBVL, 'N' ) ) THEN
 | |
|          IJOBVL = 1
 | |
|          ILVL = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
 | |
|          IJOBVL = 2
 | |
|          ILVL = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVL = -1
 | |
|          ILVL = .FALSE.
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( JOBVR, 'N' ) ) THEN
 | |
|          IJOBVR = 1
 | |
|          ILVR = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
 | |
|          IJOBVR = 2
 | |
|          ILVR = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVR = -1
 | |
|          ILVR = .FALSE.
 | |
|       END IF
 | |
|       ILV = ILVL .OR. ILVR
 | |
| *
 | |
|       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
 | |
|       WANTSN = LSAME( SENSE, 'N' )
 | |
|       WANTSE = LSAME( SENSE, 'E' )
 | |
|       WANTSV = LSAME( SENSE, 'V' )
 | |
|       WANTSB = LSAME( SENSE, 'B' )
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
 | |
|      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
 | |
|      $     THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( IJOBVL.LE.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( IJOBVR.LE.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
 | |
|      $          THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -16
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       NB refers to the optimal block size for the immediately
 | |
| *       following subroutine, as returned by ILAENV. The workspace is
 | |
| *       computed assuming ILO = 1 and IHI = N, the worst case.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( N.EQ.0 ) THEN
 | |
|             MINWRK = 1
 | |
|             MAXWRK = 1
 | |
|          ELSE
 | |
|             IF( NOSCL .AND. .NOT.ILV ) THEN
 | |
|                MINWRK = 2*N
 | |
|             ELSE
 | |
|                MINWRK = 6*N
 | |
|             END IF
 | |
|             IF( WANTSE .OR. WANTSB ) THEN
 | |
|                MINWRK = 10*N
 | |
|             END IF
 | |
|             IF( WANTSV .OR. WANTSB ) THEN
 | |
|                MINWRK = MAX( MINWRK, 2*N*( N + 4 ) + 16 )
 | |
|             END IF
 | |
|             MAXWRK = MINWRK
 | |
|             MAXWRK = MAX( MAXWRK,
 | |
|      $                    N + N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) )
 | |
|             MAXWRK = MAX( MAXWRK,
 | |
|      $                    N + N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) )
 | |
|             IF( ILVL ) THEN
 | |
|                MAXWRK = MAX( MAXWRK, N +
 | |
|      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, 0 ) )
 | |
|             END IF
 | |
|          END IF
 | |
|          WORK( 1 ) = MAXWRK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -26
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGGEVX', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
|       SMLNUM = SQRT( SMLNUM ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
 | |
|       ILASCL = .FALSE.
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          ANRMTO = SMLNUM
 | |
|          ILASCL = .TRUE.
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          ANRMTO = BIGNUM
 | |
|          ILASCL = .TRUE.
 | |
|       END IF
 | |
|       IF( ILASCL )
 | |
|      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
 | |
| *
 | |
| *     Scale B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
 | |
|       ILBSCL = .FALSE.
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
|          BNRMTO = SMLNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
|          BNRMTO = BIGNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       END IF
 | |
|       IF( ILBSCL )
 | |
|      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
 | |
| *
 | |
| *     Permute and/or balance the matrix pair (A,B)
 | |
| *     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
 | |
| *
 | |
|       CALL DGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
 | |
|      $             WORK, IERR )
 | |
| *
 | |
| *     Compute ABNRM and BBNRM
 | |
| *
 | |
|       ABNRM = DLANGE( '1', N, N, A, LDA, WORK( 1 ) )
 | |
|       IF( ILASCL ) THEN
 | |
|          WORK( 1 ) = ABNRM
 | |
|          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1,
 | |
|      $                IERR )
 | |
|          ABNRM = WORK( 1 )
 | |
|       END IF
 | |
| *
 | |
|       BBNRM = DLANGE( '1', N, N, B, LDB, WORK( 1 ) )
 | |
|       IF( ILBSCL ) THEN
 | |
|          WORK( 1 ) = BBNRM
 | |
|          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1,
 | |
|      $                IERR )
 | |
|          BBNRM = WORK( 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Reduce B to triangular form (QR decomposition of B)
 | |
| *     (Workspace: need N, prefer N*NB )
 | |
| *
 | |
|       IROWS = IHI + 1 - ILO
 | |
|       IF( ILV .OR. .NOT.WANTSN ) THEN
 | |
|          ICOLS = N + 1 - ILO
 | |
|       ELSE
 | |
|          ICOLS = IROWS
 | |
|       END IF
 | |
|       ITAU = 1
 | |
|       IWRK = ITAU + IROWS
 | |
|       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | |
|      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
| *
 | |
| *     Apply the orthogonal transformation to A
 | |
| *     (Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | |
|      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
 | |
|      $             LWORK+1-IWRK, IERR )
 | |
| *
 | |
| *     Initialize VL and/or VR
 | |
| *     (Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       IF( ILVL ) THEN
 | |
|          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
 | |
|          IF( IROWS.GT.1 ) THEN
 | |
|             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | |
|      $                   VL( ILO+1, ILO ), LDVL )
 | |
|          END IF
 | |
|          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
 | |
|      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( ILVR )
 | |
|      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
 | |
| *
 | |
| *     Reduce to generalized Hessenberg form
 | |
| *     (Workspace: none needed)
 | |
| *
 | |
|       IF( ILV .OR. .NOT.WANTSN ) THEN
 | |
| *
 | |
| *        Eigenvectors requested -- work on whole matrix.
 | |
| *
 | |
|          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
 | |
|      $                LDVL, VR, LDVR, IERR )
 | |
|       ELSE
 | |
|          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
 | |
|      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
 | |
|       END IF
 | |
| *
 | |
| *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
 | |
| *     Schur forms and Schur vectors)
 | |
| *     (Workspace: need N)
 | |
| *
 | |
|       IF( ILV .OR. .NOT.WANTSN ) THEN
 | |
|          CHTEMP = 'S'
 | |
|       ELSE
 | |
|          CHTEMP = 'E'
 | |
|       END IF
 | |
| *
 | |
|       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
 | |
|      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK,
 | |
|      $             LWORK, IERR )
 | |
|       IF( IERR.NE.0 ) THEN
 | |
|          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
 | |
|             INFO = IERR
 | |
|          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
 | |
|             INFO = IERR - N
 | |
|          ELSE
 | |
|             INFO = N + 1
 | |
|          END IF
 | |
|          GO TO 130
 | |
|       END IF
 | |
| *
 | |
| *     Compute Eigenvectors and estimate condition numbers if desired
 | |
| *     (Workspace: DTGEVC: need 6*N
 | |
| *                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',
 | |
| *                         need N otherwise )
 | |
| *
 | |
|       IF( ILV .OR. .NOT.WANTSN ) THEN
 | |
|          IF( ILV ) THEN
 | |
|             IF( ILVL ) THEN
 | |
|                IF( ILVR ) THEN
 | |
|                   CHTEMP = 'B'
 | |
|                ELSE
 | |
|                   CHTEMP = 'L'
 | |
|                END IF
 | |
|             ELSE
 | |
|                CHTEMP = 'R'
 | |
|             END IF
 | |
| *
 | |
|             CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
 | |
|      $                   LDVL, VR, LDVR, N, IN, WORK, IERR )
 | |
|             IF( IERR.NE.0 ) THEN
 | |
|                INFO = N + 2
 | |
|                GO TO 130
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          IF( .NOT.WANTSN ) THEN
 | |
| *
 | |
| *           compute eigenvectors (DTGEVC) and estimate condition
 | |
| *           numbers (DTGSNA). Note that the definition of the condition
 | |
| *           number is not invariant under transformation (u,v) to
 | |
| *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
 | |
| *           Schur form (S,T), Q and Z are orthogonal matrices. In order
 | |
| *           to avoid using extra 2*N*N workspace, we have to recalculate
 | |
| *           eigenvectors and estimate one condition numbers at a time.
 | |
| *
 | |
|             PAIR = .FALSE.
 | |
|             DO 20 I = 1, N
 | |
| *
 | |
|                IF( PAIR ) THEN
 | |
|                   PAIR = .FALSE.
 | |
|                   GO TO 20
 | |
|                END IF
 | |
|                MM = 1
 | |
|                IF( I.LT.N ) THEN
 | |
|                   IF( A( I+1, I ).NE.ZERO ) THEN
 | |
|                      PAIR = .TRUE.
 | |
|                      MM = 2
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
|                DO 10 J = 1, N
 | |
|                   BWORK( J ) = .FALSE.
 | |
|    10          CONTINUE
 | |
|                IF( MM.EQ.1 ) THEN
 | |
|                   BWORK( I ) = .TRUE.
 | |
|                ELSE IF( MM.EQ.2 ) THEN
 | |
|                   BWORK( I ) = .TRUE.
 | |
|                   BWORK( I+1 ) = .TRUE.
 | |
|                END IF
 | |
| *
 | |
|                IWRK = MM*N + 1
 | |
|                IWRK1 = IWRK + MM*N
 | |
| *
 | |
| *              Compute a pair of left and right eigenvectors.
 | |
| *              (compute workspace: need up to 4*N + 6*N)
 | |
| *
 | |
|                IF( WANTSE .OR. WANTSB ) THEN
 | |
|                   CALL DTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
 | |
|      $                         WORK( 1 ), N, WORK( IWRK ), N, MM, M,
 | |
|      $                         WORK( IWRK1 ), IERR )
 | |
|                   IF( IERR.NE.0 ) THEN
 | |
|                      INFO = N + 2
 | |
|                      GO TO 130
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
|                CALL DTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
 | |
|      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
 | |
|      $                      RCONDV( I ), MM, M, WORK( IWRK1 ),
 | |
|      $                      LWORK-IWRK1+1, IWORK, IERR )
 | |
| *
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Undo balancing on VL and VR and normalization
 | |
| *     (Workspace: none needed)
 | |
| *
 | |
|       IF( ILVL ) THEN
 | |
|          CALL DGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
 | |
|      $                LDVL, IERR )
 | |
| *
 | |
|          DO 70 JC = 1, N
 | |
|             IF( ALPHAI( JC ).LT.ZERO )
 | |
|      $         GO TO 70
 | |
|             TEMP = ZERO
 | |
|             IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                DO 30 JR = 1, N
 | |
|                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
|                DO 40 JR = 1, N
 | |
|                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
 | |
|      $                   ABS( VL( JR, JC+1 ) ) )
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|             IF( TEMP.LT.SMLNUM )
 | |
|      $         GO TO 70
 | |
|             TEMP = ONE / TEMP
 | |
|             IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                DO 50 JR = 1, N
 | |
|                   VL( JR, JC ) = VL( JR, JC )*TEMP
 | |
|    50          CONTINUE
 | |
|             ELSE
 | |
|                DO 60 JR = 1, N
 | |
|                   VL( JR, JC ) = VL( JR, JC )*TEMP
 | |
|                   VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
 | |
|    60          CONTINUE
 | |
|             END IF
 | |
|    70    CONTINUE
 | |
|       END IF
 | |
|       IF( ILVR ) THEN
 | |
|          CALL DGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
 | |
|      $                LDVR, IERR )
 | |
|          DO 120 JC = 1, N
 | |
|             IF( ALPHAI( JC ).LT.ZERO )
 | |
|      $         GO TO 120
 | |
|             TEMP = ZERO
 | |
|             IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                DO 80 JR = 1, N
 | |
|                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
 | |
|    80          CONTINUE
 | |
|             ELSE
 | |
|                DO 90 JR = 1, N
 | |
|                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
 | |
|      $                   ABS( VR( JR, JC+1 ) ) )
 | |
|    90          CONTINUE
 | |
|             END IF
 | |
|             IF( TEMP.LT.SMLNUM )
 | |
|      $         GO TO 120
 | |
|             TEMP = ONE / TEMP
 | |
|             IF( ALPHAI( JC ).EQ.ZERO ) THEN
 | |
|                DO 100 JR = 1, N
 | |
|                   VR( JR, JC ) = VR( JR, JC )*TEMP
 | |
|   100          CONTINUE
 | |
|             ELSE
 | |
|                DO 110 JR = 1, N
 | |
|                   VR( JR, JC ) = VR( JR, JC )*TEMP
 | |
|                   VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
 | |
|   110          CONTINUE
 | |
|             END IF
 | |
|   120    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|   130 CONTINUE
 | |
| *
 | |
|       IF( ILASCL ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
 | |
|          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( ILBSCL ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = MAXWRK
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGGEVX
 | |
| *
 | |
|       END
 |