962 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			962 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DDRVES
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
| *                          NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
 | |
| *                          LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            BWORK( * ), DOTYPE( * )
 | |
| *       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), HT( LDA, * ),
 | |
| *      $                   RESULT( 13 ), VS( LDVS, * ), WI( * ), WIT( * ),
 | |
| *      $                   WORK( * ), WR( * ), WRT( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    DDRVES checks the nonsymmetric eigenvalue (Schur form) problem
 | |
| *>    driver DGEES.
 | |
| *>
 | |
| *>    When DDRVES is called, a number of matrix "sizes" ("n's") and a
 | |
| *>    number of matrix "types" are specified.  For each size ("n")
 | |
| *>    and each type of matrix, one matrix will be generated and used
 | |
| *>    to test the nonsymmetric eigenroutines.  For each matrix, 13
 | |
| *>    tests will be performed:
 | |
| *>
 | |
| *>    (1)     0 if T is in Schur form, 1/ulp otherwise
 | |
| *>           (no sorting of eigenvalues)
 | |
| *>
 | |
| *>    (2)     | A - VS T VS' | / ( n |A| ulp )
 | |
| *>
 | |
| *>      Here VS is the matrix of Schur eigenvectors, and T is in Schur
 | |
| *>      form  (no sorting of eigenvalues).
 | |
| *>
 | |
| *>    (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).
 | |
| *>
 | |
| *>    (4)     0     if WR+sqrt(-1)*WI are eigenvalues of T
 | |
| *>            1/ulp otherwise
 | |
| *>            (no sorting of eigenvalues)
 | |
| *>
 | |
| *>    (5)     0     if T(with VS) = T(without VS),
 | |
| *>            1/ulp otherwise
 | |
| *>            (no sorting of eigenvalues)
 | |
| *>
 | |
| *>    (6)     0     if eigenvalues(with VS) = eigenvalues(without VS),
 | |
| *>            1/ulp otherwise
 | |
| *>            (no sorting of eigenvalues)
 | |
| *>
 | |
| *>    (7)     0 if T is in Schur form, 1/ulp otherwise
 | |
| *>            (with sorting of eigenvalues)
 | |
| *>
 | |
| *>    (8)     | A - VS T VS' | / ( n |A| ulp )
 | |
| *>
 | |
| *>      Here VS is the matrix of Schur eigenvectors, and T is in Schur
 | |
| *>      form  (with sorting of eigenvalues).
 | |
| *>
 | |
| *>    (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).
 | |
| *>
 | |
| *>    (10)    0     if WR+sqrt(-1)*WI are eigenvalues of T
 | |
| *>            1/ulp otherwise
 | |
| *>            (with sorting of eigenvalues)
 | |
| *>
 | |
| *>    (11)    0     if T(with VS) = T(without VS),
 | |
| *>            1/ulp otherwise
 | |
| *>            (with sorting of eigenvalues)
 | |
| *>
 | |
| *>    (12)    0     if eigenvalues(with VS) = eigenvalues(without VS),
 | |
| *>            1/ulp otherwise
 | |
| *>            (with sorting of eigenvalues)
 | |
| *>
 | |
| *>    (13)    if sorting worked and SDIM is the number of
 | |
| *>            eigenvalues which were SELECTed
 | |
| *>
 | |
| *>    The "sizes" are specified by an array NN(1:NSIZES); the value of
 | |
| *>    each element NN(j) specifies one size.
 | |
| *>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | |
| *>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *>    Currently, the list of possible types is:
 | |
| *>
 | |
| *>    (1)  The zero matrix.
 | |
| *>    (2)  The identity matrix.
 | |
| *>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
 | |
| *>
 | |
| *>    (4)  A diagonal matrix with evenly spaced entries
 | |
| *>         1, ..., ULP  and random signs.
 | |
| *>         (ULP = (first number larger than 1) - 1 )
 | |
| *>    (5)  A diagonal matrix with geometrically spaced entries
 | |
| *>         1, ..., ULP  and random signs.
 | |
| *>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | |
| *>         and random signs.
 | |
| *>
 | |
| *>    (7)  Same as (4), but multiplied by a constant near
 | |
| *>         the overflow threshold
 | |
| *>    (8)  Same as (4), but multiplied by a constant near
 | |
| *>         the underflow threshold
 | |
| *>
 | |
| *>    (9)  A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has evenly spaced entries 1, ..., ULP with random signs
 | |
| *>         on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (10) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has geometrically spaced entries 1, ..., ULP with random
 | |
| *>         signs on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (11) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has "clustered" entries 1, ULP,..., ULP with random
 | |
| *>         signs on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (12) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has real or complex conjugate paired eigenvalues randomly
 | |
| *>         chosen from ( ULP, 1 ) and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (13) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
 | |
| *>         with random signs on the diagonal and random O(1) entries
 | |
| *>         in the upper triangle.
 | |
| *>
 | |
| *>    (14) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has geometrically spaced entries
 | |
| *>         1, ..., ULP with random signs on the diagonal and random
 | |
| *>         O(1) entries in the upper triangle.
 | |
| *>
 | |
| *>    (15) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
 | |
| *>         with random signs on the diagonal and random O(1) entries
 | |
| *>         in the upper triangle.
 | |
| *>
 | |
| *>    (16) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has real or complex conjugate paired
 | |
| *>         eigenvalues randomly chosen from ( ULP, 1 ) and random
 | |
| *>         O(1) entries in the upper triangle.
 | |
| *>
 | |
| *>    (17) Same as (16), but multiplied by a constant
 | |
| *>         near the overflow threshold
 | |
| *>    (18) Same as (16), but multiplied by a constant
 | |
| *>         near the underflow threshold
 | |
| *>
 | |
| *>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
 | |
| *>         If N is at least 4, all entries in first two rows and last
 | |
| *>         row, and first column and last two columns are zero.
 | |
| *>    (20) Same as (19), but multiplied by a constant
 | |
| *>         near the overflow threshold
 | |
| *>    (21) Same as (19), but multiplied by a constant
 | |
| *>         near the underflow threshold
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NSIZES
 | |
| *> \verbatim
 | |
| *>          NSIZES is INTEGER
 | |
| *>          The number of sizes of matrices to use.  If it is zero,
 | |
| *>          DDRVES does nothing.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER array, dimension (NSIZES)
 | |
| *>          An array containing the sizes to be used for the matrices.
 | |
| *>          Zero values will be skipped.  The values must be at least
 | |
| *>          zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NTYPES
 | |
| *> \verbatim
 | |
| *>          NTYPES is INTEGER
 | |
| *>          The number of elements in DOTYPE.   If it is zero, DDRVES
 | |
| *>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | |
| *>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | |
| *>          defined, which is to use whatever matrix is in A.  This
 | |
| *>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | |
| *>          DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>          matrix of that size and of type j will be generated.
 | |
| *>          If NTYPES is smaller than the maximum number of types
 | |
| *>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>          MAXTYP will not be generated.  If NTYPES is larger
 | |
| *>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>          will be ignored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator. The array elements should be between 0 and 4095;
 | |
| *>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>          be odd.  The random number generator uses a linear
 | |
| *>          congruential sequence limited to small integers, and so
 | |
| *>          should produce machine independent random numbers. The
 | |
| *>          values of ISEED are changed on exit, and can be used in the
 | |
| *>          next call to DDRVES to continue the same random number
 | |
| *>          sequence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          A test will count as "failed" if the "error", computed as
 | |
| *>          described above, exceeds THRESH.  Note that the error
 | |
| *>          is scaled to be O(1), so THRESH should be a reasonably
 | |
| *>          small multiple of 1, e.g., 10 or 100.  In particular,
 | |
| *>          it should not depend on the precision (single vs. double)
 | |
| *>          or the size of the matrix.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUNIT
 | |
| *> \verbatim
 | |
| *>          NOUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for printing out error messages
 | |
| *>          (e.g., if a routine returns INFO not equal to 0.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA, max(NN))
 | |
| *>          Used to hold the matrix whose eigenvalues are to be
 | |
| *>          computed.  On exit, A contains the last matrix actually used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A, and H. LDA must be at
 | |
| *>          least 1 and at least max(NN).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] H
 | |
| *> \verbatim
 | |
| *>          H is DOUBLE PRECISION array, dimension (LDA, max(NN))
 | |
| *>          Another copy of the test matrix A, modified by DGEES.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] HT
 | |
| *> \verbatim
 | |
| *>          HT is DOUBLE PRECISION array, dimension (LDA, max(NN))
 | |
| *>          Yet another copy of the test matrix A, modified by DGEES.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR
 | |
| *> \verbatim
 | |
| *>          WR is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI
 | |
| *> \verbatim
 | |
| *>          WI is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>
 | |
| *>          The real and imaginary parts of the eigenvalues of A.
 | |
| *>          On exit, WR + WI*i are the eigenvalues of the matrix in A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WRT
 | |
| *> \verbatim
 | |
| *>          WRT is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WIT
 | |
| *> \verbatim
 | |
| *>          WIT is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>
 | |
| *>          Like WR, WI, these arrays contain the eigenvalues of A,
 | |
| *>          but those computed when DGEES only computes a partial
 | |
| *>          eigendecomposition, i.e. not Schur vectors
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VS
 | |
| *> \verbatim
 | |
| *>          VS is DOUBLE PRECISION array, dimension (LDVS, max(NN))
 | |
| *>          VS holds the computed Schur vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVS
 | |
| *> \verbatim
 | |
| *>          LDVS is INTEGER
 | |
| *>          Leading dimension of VS. Must be at least max(1,max(NN)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (13)
 | |
| *>          The values computed by the 13 tests described above.
 | |
| *>          The values are currently limited to 1/ulp, to avoid overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (NWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NWORK
 | |
| *> \verbatim
 | |
| *>          NWORK is INTEGER
 | |
| *>          The number of entries in WORK.  This must be at least
 | |
| *>          5*NN(j)+2*NN(j)**2 for all j.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BWORK
 | |
| *> \verbatim
 | |
| *>          BWORK is LOGICAL array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          If 0, then everything ran OK.
 | |
| *>           -1: NSIZES < 0
 | |
| *>           -2: Some NN(j) < 0
 | |
| *>           -3: NTYPES < 0
 | |
| *>           -6: THRESH < 0
 | |
| *>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
 | |
| *>          -17: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ).
 | |
| *>          -20: NWORK too small.
 | |
| *>          If  DLATMR, SLATMS, SLATME or DGEES returns an error code,
 | |
| *>              the absolute value of it is returned.
 | |
| *>
 | |
| *>-----------------------------------------------------------------------
 | |
| *>
 | |
| *>     Some Local Variables and Parameters:
 | |
| *>     ---- ----- --------- --- ----------
 | |
| *>
 | |
| *>     ZERO, ONE       Real 0 and 1.
 | |
| *>     MAXTYP          The number of types defined.
 | |
| *>     NMAX            Largest value in NN.
 | |
| *>     NERRS           The number of tests which have exceeded THRESH
 | |
| *>     COND, CONDS,
 | |
| *>     IMODE           Values to be passed to the matrix generators.
 | |
| *>     ANORM           Norm of A; passed to matrix generators.
 | |
| *>
 | |
| *>     OVFL, UNFL      Overflow and underflow thresholds.
 | |
| *>     ULP, ULPINV     Finest relative precision and its inverse.
 | |
| *>     RTULP, RTULPI   Square roots of the previous 4 values.
 | |
| *>
 | |
| *>             The following four arrays decode JTYPE:
 | |
| *>     KTYPE(j)        The general type (1-10) for type "j".
 | |
| *>     KMODE(j)        The MODE value to be passed to the matrix
 | |
| *>                     generator for type "j".
 | |
| *>     KMAGN(j)        The order of magnitude ( O(1),
 | |
| *>                     O(overflow^(1/2) ), O(underflow^(1/2) )
 | |
| *>     KCONDS(j)       Selectw whether CONDS is to be 1 or
 | |
| *>                     1/sqrt(ulp).  (0 means irrelevant.)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
|      $                   NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
 | |
|      $                   LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            BWORK( * ), DOTYPE( * )
 | |
|       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), HT( LDA, * ),
 | |
|      $                   RESULT( 13 ), VS( LDVS, * ), WI( * ), WIT( * ),
 | |
|      $                   WORK( * ), WR( * ), WRT( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 21 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADNN
 | |
|       CHARACTER          SORT
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, IINFO, IMODE, ISORT, ITYPE, IWK, J, JCOL,
 | |
|      $                   JSIZE, JTYPE, KNTEIG, LWORK, MTYPES, N, NERRS,
 | |
|      $                   NFAIL, NMAX, NNWORK, NTEST, NTESTF, NTESTT,
 | |
|      $                   RSUB, SDIM
 | |
|       DOUBLE PRECISION   ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TMP,
 | |
|      $                   ULP, ULPINV, UNFL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       CHARACTER          ADUMMA( 1 )
 | |
|       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
 | |
|      $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
 | |
|      $                   KTYPE( MAXTYP )
 | |
|       DOUBLE PRECISION   RES( 2 )
 | |
| *     ..
 | |
| *     .. Arrays in Common ..
 | |
|       LOGICAL            SELVAL( 20 )
 | |
|       DOUBLE PRECISION   SELWI( 20 ), SELWR( 20 )
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       INTEGER            SELDIM, SELOPT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            DSLECT
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DSLECT, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEES, DHST01, DLABAD, DLACPY, DLASET, DLASUM,
 | |
|      $                   DLATME, DLATMR, DLATMS, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
 | |
|       DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
 | |
|      $                   3, 1, 2, 3 /
 | |
|       DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
 | |
|      $                   1, 5, 5, 5, 4, 3, 1 /
 | |
|       DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Double precision'
 | |
|       PATH( 2: 3 ) = 'ES'
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       NTESTT = 0
 | |
|       NTESTF = 0
 | |
|       INFO = 0
 | |
|       SELOPT = 0
 | |
| *
 | |
| *     Important constants
 | |
| *
 | |
|       BADNN = .FALSE.
 | |
|       NMAX = 0
 | |
|       DO 10 J = 1, NSIZES
 | |
|          NMAX = MAX( NMAX, NN( J ) )
 | |
|          IF( NN( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( THRESH.LT.ZERO ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( NOUNIT.LE.0 ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDVS.LT.1 .OR. LDVS.LT.NMAX ) THEN
 | |
|          INFO = -17
 | |
|       ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
 | |
|          INFO = -20
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DDRVES', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if nothing to do
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     More Important constants
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       CALL DLABAD( UNFL, OVFL )
 | |
|       ULP = DLAMCH( 'Precision' )
 | |
|       ULPINV = ONE / ULP
 | |
|       RTULP = SQRT( ULP )
 | |
|       RTULPI = ONE / RTULP
 | |
| *
 | |
| *     Loop over sizes, types
 | |
| *
 | |
|       NERRS = 0
 | |
| *
 | |
|       DO 270 JSIZE = 1, NSIZES
 | |
|          N = NN( JSIZE )
 | |
|          MTYPES = MAXTYP
 | |
|          IF( NSIZES.EQ.1 .AND. NTYPES.EQ.MAXTYP+1 )
 | |
|      $      MTYPES = MTYPES + 1
 | |
| *
 | |
|          DO 260 JTYPE = 1, MTYPES
 | |
|             IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $         GO TO 260
 | |
| *
 | |
| *           Save ISEED in case of an error.
 | |
| *
 | |
|             DO 20 J = 1, 4
 | |
|                IOLDSD( J ) = ISEED( J )
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Compute "A"
 | |
| *
 | |
| *           Control parameters:
 | |
| *
 | |
| *           KMAGN  KCONDS  KMODE        KTYPE
 | |
| *       =1  O(1)   1       clustered 1  zero
 | |
| *       =2  large  large   clustered 2  identity
 | |
| *       =3  small          exponential  Jordan
 | |
| *       =4                 arithmetic   diagonal, (w/ eigenvalues)
 | |
| *       =5                 random log   symmetric, w/ eigenvalues
 | |
| *       =6                 random       general, w/ eigenvalues
 | |
| *       =7                              random diagonal
 | |
| *       =8                              random symmetric
 | |
| *       =9                              random general
 | |
| *       =10                             random triangular
 | |
| *
 | |
|             IF( MTYPES.GT.MAXTYP )
 | |
|      $         GO TO 90
 | |
| *
 | |
|             ITYPE = KTYPE( JTYPE )
 | |
|             IMODE = KMODE( JTYPE )
 | |
| *
 | |
| *           Compute norm
 | |
| *
 | |
|             GO TO ( 30, 40, 50 )KMAGN( JTYPE )
 | |
| *
 | |
|    30       CONTINUE
 | |
|             ANORM = ONE
 | |
|             GO TO 60
 | |
| *
 | |
|    40       CONTINUE
 | |
|             ANORM = OVFL*ULP
 | |
|             GO TO 60
 | |
| *
 | |
|    50       CONTINUE
 | |
|             ANORM = UNFL*ULPINV
 | |
|             GO TO 60
 | |
| *
 | |
|    60       CONTINUE
 | |
| *
 | |
|             CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | |
|             IINFO = 0
 | |
|             COND = ULPINV
 | |
| *
 | |
| *           Special Matrices -- Identity & Jordan block
 | |
| *
 | |
| *              Zero
 | |
| *
 | |
|             IF( ITYPE.EQ.1 ) THEN
 | |
|                IINFO = 0
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *              Identity
 | |
| *
 | |
|                DO 70 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|    70          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *              Jordan Block
 | |
| *
 | |
|                DO 80 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|                   IF( JCOL.GT.1 )
 | |
|      $               A( JCOL, JCOL-1 ) = ONE
 | |
|    80          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.4 ) THEN
 | |
| *
 | |
| *              Diagonal Matrix, [Eigen]values Specified
 | |
| *
 | |
|                CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.5 ) THEN
 | |
| *
 | |
| *              Symmetric, eigenvalues specified
 | |
| *
 | |
|                CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.6 ) THEN
 | |
| *
 | |
| *              General, eigenvalues specified
 | |
| *
 | |
|                IF( KCONDS( JTYPE ).EQ.1 ) THEN
 | |
|                   CONDS = ONE
 | |
|                ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
 | |
|                   CONDS = RTULPI
 | |
|                ELSE
 | |
|                   CONDS = ZERO
 | |
|                END IF
 | |
| *
 | |
|                ADUMMA( 1 ) = ' '
 | |
|                CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
 | |
|      $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
 | |
|      $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.7 ) THEN
 | |
| *
 | |
| *              Diagonal, random eigenvalues
 | |
| *
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.8 ) THEN
 | |
| *
 | |
| *              Symmetric, random eigenvalues
 | |
| *
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.9 ) THEN
 | |
| *
 | |
| *              General, random eigenvalues
 | |
| *
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
|                IF( N.GE.4 ) THEN
 | |
|                   CALL DLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
 | |
|                   CALL DLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
 | |
|      $                         LDA )
 | |
|                   CALL DLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
 | |
|      $                         LDA )
 | |
|                   CALL DLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
 | |
|      $                         LDA )
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.10 ) THEN
 | |
| *
 | |
| *              Triangular, random eigenvalues
 | |
| *
 | |
|                CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                IINFO = 1
 | |
|             END IF
 | |
| *
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|    90       CONTINUE
 | |
| *
 | |
| *           Test for minimal and generous workspace
 | |
| *
 | |
|             DO 250 IWK = 1, 2
 | |
|                IF( IWK.EQ.1 ) THEN
 | |
|                   NNWORK = 3*N
 | |
|                ELSE
 | |
|                   NNWORK = 5*N + 2*N**2
 | |
|                END IF
 | |
|                NNWORK = MAX( NNWORK, 1 )
 | |
| *
 | |
| *              Initialize RESULT
 | |
| *
 | |
|                DO 100 J = 1, 13
 | |
|                   RESULT( J ) = -ONE
 | |
|   100          CONTINUE
 | |
| *
 | |
| *              Test with and without sorting of eigenvalues
 | |
| *
 | |
|                DO 210 ISORT = 0, 1
 | |
|                   IF( ISORT.EQ.0 ) THEN
 | |
|                      SORT = 'N'
 | |
|                      RSUB = 0
 | |
|                   ELSE
 | |
|                      SORT = 'S'
 | |
|                      RSUB = 6
 | |
|                   END IF
 | |
| *
 | |
| *                 Compute Schur form and Schur vectors, and test them
 | |
| *
 | |
|                   CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
 | |
|                   CALL DGEES( 'V', SORT, DSLECT, N, H, LDA, SDIM, WR,
 | |
|      $                        WI, VS, LDVS, WORK, NNWORK, BWORK, IINFO )
 | |
|                   IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
 | |
|                      RESULT( 1+RSUB ) = ULPINV
 | |
|                      WRITE( NOUNIT, FMT = 9992 )'DGEES1', IINFO, N,
 | |
|      $                  JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      GO TO 220
 | |
|                   END IF
 | |
| *
 | |
| *                 Do Test (1) or Test (7)
 | |
| *
 | |
|                   RESULT( 1+RSUB ) = ZERO
 | |
|                   DO 120 J = 1, N - 2
 | |
|                      DO 110 I = J + 2, N
 | |
|                         IF( H( I, J ).NE.ZERO )
 | |
|      $                     RESULT( 1+RSUB ) = ULPINV
 | |
|   110                CONTINUE
 | |
|   120             CONTINUE
 | |
|                   DO 130 I = 1, N - 2
 | |
|                      IF( H( I+1, I ).NE.ZERO .AND. H( I+2, I+1 ).NE.
 | |
|      $                   ZERO )RESULT( 1+RSUB ) = ULPINV
 | |
|   130             CONTINUE
 | |
|                   DO 140 I = 1, N - 1
 | |
|                      IF( H( I+1, I ).NE.ZERO ) THEN
 | |
|                         IF( H( I, I ).NE.H( I+1, I+1 ) .OR.
 | |
|      $                      H( I, I+1 ).EQ.ZERO .OR.
 | |
|      $                      SIGN( ONE, H( I+1, I ) ).EQ.
 | |
|      $                      SIGN( ONE, H( I, I+1 ) ) )RESULT( 1+RSUB )
 | |
|      $                      = ULPINV
 | |
|                      END IF
 | |
|   140             CONTINUE
 | |
| *
 | |
| *                 Do Tests (2) and (3) or Tests (8) and (9)
 | |
| *
 | |
|                   LWORK = MAX( 1, 2*N*N )
 | |
|                   CALL DHST01( N, 1, N, A, LDA, H, LDA, VS, LDVS, WORK,
 | |
|      $                         LWORK, RES )
 | |
|                   RESULT( 2+RSUB ) = RES( 1 )
 | |
|                   RESULT( 3+RSUB ) = RES( 2 )
 | |
| *
 | |
| *                 Do Test (4) or Test (10)
 | |
| *
 | |
|                   RESULT( 4+RSUB ) = ZERO
 | |
|                   DO 150 I = 1, N
 | |
|                      IF( H( I, I ).NE.WR( I ) )
 | |
|      $                  RESULT( 4+RSUB ) = ULPINV
 | |
|   150             CONTINUE
 | |
|                   IF( N.GT.1 ) THEN
 | |
|                      IF( H( 2, 1 ).EQ.ZERO .AND. WI( 1 ).NE.ZERO )
 | |
|      $                  RESULT( 4+RSUB ) = ULPINV
 | |
|                      IF( H( N, N-1 ).EQ.ZERO .AND. WI( N ).NE.ZERO )
 | |
|      $                  RESULT( 4+RSUB ) = ULPINV
 | |
|                   END IF
 | |
|                   DO 160 I = 1, N - 1
 | |
|                      IF( H( I+1, I ).NE.ZERO ) THEN
 | |
|                         TMP = SQRT( ABS( H( I+1, I ) ) )*
 | |
|      $                        SQRT( ABS( H( I, I+1 ) ) )
 | |
|                         RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
 | |
|      $                                     ABS( WI( I )-TMP ) /
 | |
|      $                                     MAX( ULP*TMP, UNFL ) )
 | |
|                         RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
 | |
|      $                                     ABS( WI( I+1 )+TMP ) /
 | |
|      $                                     MAX( ULP*TMP, UNFL ) )
 | |
|                      ELSE IF( I.GT.1 ) THEN
 | |
|                         IF( H( I+1, I ).EQ.ZERO .AND. H( I, I-1 ).EQ.
 | |
|      $                      ZERO .AND. WI( I ).NE.ZERO )RESULT( 4+RSUB )
 | |
|      $                       = ULPINV
 | |
|                      END IF
 | |
|   160             CONTINUE
 | |
| *
 | |
| *                 Do Test (5) or Test (11)
 | |
| *
 | |
|                   CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
 | |
|                   CALL DGEES( 'N', SORT, DSLECT, N, HT, LDA, SDIM, WRT,
 | |
|      $                        WIT, VS, LDVS, WORK, NNWORK, BWORK,
 | |
|      $                        IINFO )
 | |
|                   IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
 | |
|                      RESULT( 5+RSUB ) = ULPINV
 | |
|                      WRITE( NOUNIT, FMT = 9992 )'DGEES2', IINFO, N,
 | |
|      $                  JTYPE, IOLDSD
 | |
|                      INFO = ABS( IINFO )
 | |
|                      GO TO 220
 | |
|                   END IF
 | |
| *
 | |
|                   RESULT( 5+RSUB ) = ZERO
 | |
|                   DO 180 J = 1, N
 | |
|                      DO 170 I = 1, N
 | |
|                         IF( H( I, J ).NE.HT( I, J ) )
 | |
|      $                     RESULT( 5+RSUB ) = ULPINV
 | |
|   170                CONTINUE
 | |
|   180             CONTINUE
 | |
| *
 | |
| *                 Do Test (6) or Test (12)
 | |
| *
 | |
|                   RESULT( 6+RSUB ) = ZERO
 | |
|                   DO 190 I = 1, N
 | |
|                      IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
 | |
|      $                  RESULT( 6+RSUB ) = ULPINV
 | |
|   190             CONTINUE
 | |
| *
 | |
| *                 Do Test (13)
 | |
| *
 | |
|                   IF( ISORT.EQ.1 ) THEN
 | |
|                      RESULT( 13 ) = ZERO
 | |
|                      KNTEIG = 0
 | |
|                      DO 200 I = 1, N
 | |
|                         IF( DSLECT( WR( I ), WI( I ) ) .OR.
 | |
|      $                      DSLECT( WR( I ), -WI( I ) ) )
 | |
|      $                      KNTEIG = KNTEIG + 1
 | |
|                         IF( I.LT.N ) THEN
 | |
|                            IF( ( DSLECT( WR( I+1 ),
 | |
|      $                         WI( I+1 ) ) .OR. DSLECT( WR( I+1 ),
 | |
|      $                         -WI( I+1 ) ) ) .AND.
 | |
|      $                         ( .NOT.( DSLECT( WR( I ),
 | |
|      $                         WI( I ) ) .OR. DSLECT( WR( I ),
 | |
|      $                         -WI( I ) ) ) ) .AND. IINFO.NE.N+2 )
 | |
|      $                         RESULT( 13 ) = ULPINV
 | |
|                         END IF
 | |
|   200                CONTINUE
 | |
|                      IF( SDIM.NE.KNTEIG ) THEN
 | |
|                         RESULT( 13 ) = ULPINV
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|   210          CONTINUE
 | |
| *
 | |
| *              End of Loop -- Check for RESULT(j) > THRESH
 | |
| *
 | |
|   220          CONTINUE
 | |
| *
 | |
|                NTEST = 0
 | |
|                NFAIL = 0
 | |
|                DO 230 J = 1, 13
 | |
|                   IF( RESULT( J ).GE.ZERO )
 | |
|      $               NTEST = NTEST + 1
 | |
|                   IF( RESULT( J ).GE.THRESH )
 | |
|      $               NFAIL = NFAIL + 1
 | |
|   230          CONTINUE
 | |
| *
 | |
|                IF( NFAIL.GT.0 )
 | |
|      $            NTESTF = NTESTF + 1
 | |
|                IF( NTESTF.EQ.1 ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9999 )PATH
 | |
|                   WRITE( NOUNIT, FMT = 9998 )
 | |
|                   WRITE( NOUNIT, FMT = 9997 )
 | |
|                   WRITE( NOUNIT, FMT = 9996 )
 | |
|                   WRITE( NOUNIT, FMT = 9995 )THRESH
 | |
|                   WRITE( NOUNIT, FMT = 9994 )
 | |
|                   NTESTF = 2
 | |
|                END IF
 | |
| *
 | |
|                DO 240 J = 1, 13
 | |
|                   IF( RESULT( J ).GE.THRESH ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9993 )N, IWK, IOLDSD, JTYPE,
 | |
|      $                  J, RESULT( J )
 | |
|                   END IF
 | |
|   240          CONTINUE
 | |
| *
 | |
|                NERRS = NERRS + NFAIL
 | |
|                NTESTT = NTESTT + NTEST
 | |
| *
 | |
|   250       CONTINUE
 | |
|   260    CONTINUE
 | |
|   270 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
 | |
| *
 | |
|  9999 FORMAT( / 1X, A3, ' -- Real Schur Form Decomposition Driver',
 | |
|      $      / ' Matrix types (see DDRVES for details): ' )
 | |
| *
 | |
|  9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
 | |
|      $      '           ', '  5=Diagonal: geometr. spaced entries.',
 | |
|      $      / '  2=Identity matrix.                    ', '  6=Diagona',
 | |
|      $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
 | |
|      $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
 | |
|      $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
 | |
|      $      'mall, evenly spaced.' )
 | |
|  9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
 | |
|      $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
 | |
|      $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
 | |
|      $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
 | |
|      $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
 | |
|      $      'lex ', / ' 12=Well-cond., random complex ', 6X, '   ',
 | |
|      $      ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
 | |
|      $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
 | |
|      $      ' complx ' )
 | |
|  9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
 | |
|      $      'with small random entries.', / ' 20=Matrix with large ran',
 | |
|      $      'dom entries.   ', / )
 | |
|  9995 FORMAT( ' Tests performed with test threshold =', F8.2,
 | |
|      $      / ' ( A denotes A on input and T denotes A on output)',
 | |
|      $      / / ' 1 = 0 if T in Schur form (no sort), ',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)',
 | |
|      $      / ' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ', /
 | |
|      $      ' 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 5 = 0 if T same no matter if VS computed (no sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 6 = 0 if WR, WI same no matter if VS computed (no sort)',
 | |
|      $      ',  1/ulp otherwise' )
 | |
|  9994 FORMAT( ' 7 = 0 if T in Schur form (sort), ', '  1/ulp otherwise',
 | |
|      $      / ' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)',
 | |
|      $      / ' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ',
 | |
|      $      / ' 10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 11 = 0 if T same no matter if VS computed (sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 12 = 0 if WR, WI same no matter if VS computed (sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 13 = 0 if sorting succesful, 1/ulp otherwise', / )
 | |
|  9993 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
 | |
|      $      ' type ', I2, ', test(', I2, ')=', G10.3 )
 | |
|  9992 FORMAT( ' DDRVES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | |
|      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DDRVES
 | |
| *
 | |
|       END
 |