733 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			733 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGERFSX
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGERFSX + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerfsx.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerfsx.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerfsx.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
 | |
| *                           R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
 | |
| *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
 | |
| *                           WORK, IWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS, EQUED
 | |
| *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
 | |
| *      $                   N_ERR_BNDS
 | |
| *       DOUBLE PRECISION   RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * ), IWORK( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 | |
| *      $                   X( LDX , * ), WORK( * )
 | |
| *       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
 | |
| *      $                   ERR_BNDS_NORM( NRHS, * ),
 | |
| *      $                   ERR_BNDS_COMP( NRHS, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    DGERFSX improves the computed solution to a system of linear
 | |
| *>    equations and provides error bounds and backward error estimates
 | |
| *>    for the solution.  In addition to normwise error bound, the code
 | |
| *>    provides maximum componentwise error bound if possible.  See
 | |
| *>    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
 | |
| *>    error bounds.
 | |
| *>
 | |
| *>    The original system of linear equations may have been equilibrated
 | |
| *>    before calling this routine, as described by arguments EQUED, R
 | |
| *>    and C below. In this case, the solution and error bounds returned
 | |
| *>    are for the original unequilibrated system.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \verbatim
 | |
| *>     Some optional parameters are bundled in the PARAMS array.  These
 | |
| *>     settings determine how refinement is performed, but often the
 | |
| *>     defaults are acceptable.  If the defaults are acceptable, users
 | |
| *>     can pass NPARAMS = 0 which prevents the source code from accessing
 | |
| *>     the PARAMS argument.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>     Specifies the form of the system of equations:
 | |
| *>       = 'N':  A * X = B     (No transpose)
 | |
| *>       = 'T':  A**T * X = B  (Transpose)
 | |
| *>       = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] EQUED
 | |
| *> \verbatim
 | |
| *>          EQUED is CHARACTER*1
 | |
| *>     Specifies the form of equilibration that was done to A
 | |
| *>     before calling this routine. This is needed to compute
 | |
| *>     the solution and error bounds correctly.
 | |
| *>       = 'N':  No equilibration
 | |
| *>       = 'R':  Row equilibration, i.e., A has been premultiplied by
 | |
| *>               diag(R).
 | |
| *>       = 'C':  Column equilibration, i.e., A has been postmultiplied
 | |
| *>               by diag(C).
 | |
| *>       = 'B':  Both row and column equilibration, i.e., A has been
 | |
| *>               replaced by diag(R) * A * diag(C).
 | |
| *>               The right hand side B has been changed accordingly.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>     The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>     The number of right hand sides, i.e., the number of columns
 | |
| *>     of the matrices B and X.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>     The original N-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>     The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
 | |
| *>     The factors L and U from the factorization A = P*L*U
 | |
| *>     as computed by DGETRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAF
 | |
| *> \verbatim
 | |
| *>          LDAF is INTEGER
 | |
| *>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>     The pivot indices from DGETRF; for 1<=i<=N, row i of the
 | |
| *>     matrix was interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] R
 | |
| *> \verbatim
 | |
| *>          R is DOUBLE PRECISION array, dimension (N)
 | |
| *>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
 | |
| *>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
 | |
| *>     is not accessed.  
 | |
| *>     If R is accessed, each element of R should be a power of the radix
 | |
| *>     to ensure a reliable solution and error estimates. Scaling by
 | |
| *>     powers of the radix does not cause rounding errors unless the
 | |
| *>     result underflows or overflows. Rounding errors during scaling
 | |
| *>     lead to refining with a matrix that is not equivalent to the
 | |
| *>     input matrix, producing error estimates that may not be
 | |
| *>     reliable.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (N)
 | |
| *>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
 | |
| *>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
 | |
| *>     is not accessed. 
 | |
| *>     If C is accessed, each element of C should be a power of the radix
 | |
| *>     to ensure a reliable solution and error estimates. Scaling by
 | |
| *>     powers of the radix does not cause rounding errors unless the
 | |
| *>     result underflows or overflows. Rounding errors during scaling
 | |
| *>     lead to refining with a matrix that is not equivalent to the
 | |
| *>     input matrix, producing error estimates that may not be
 | |
| *>     reliable.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>     The right hand side matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>     The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>     On entry, the solution matrix X, as computed by DGETRS.
 | |
| *>     On exit, the improved solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>     The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>     Reciprocal scaled condition number.  This is an estimate of the
 | |
| *>     reciprocal Skeel condition number of the matrix A after
 | |
| *>     equilibration (if done).  If this is less than the machine
 | |
| *>     precision (in particular, if it is zero), the matrix is singular
 | |
| *>     to working precision.  Note that the error may still be small even
 | |
| *>     if this number is very small and the matrix appears ill-
 | |
| *>     conditioned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>     Componentwise relative backward error.  This is the
 | |
| *>     componentwise relative backward error of each solution vector X(j)
 | |
| *>     (i.e., the smallest relative change in any element of A or B that
 | |
| *>     makes X(j) an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N_ERR_BNDS
 | |
| *> \verbatim
 | |
| *>          N_ERR_BNDS is INTEGER
 | |
| *>     Number of error bounds to return for each right hand side
 | |
| *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
 | |
| *>     ERR_BNDS_COMP below.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ERR_BNDS_NORM
 | |
| *> \verbatim
 | |
| *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
 | |
| *>     For each right-hand side, this array contains information about
 | |
| *>     various error bounds and condition numbers corresponding to the
 | |
| *>     normwise relative error, which is defined as follows:
 | |
| *>
 | |
| *>     Normwise relative error in the ith solution vector:
 | |
| *>             max_j (abs(XTRUE(j,i) - X(j,i)))
 | |
| *>            ------------------------------
 | |
| *>                  max_j abs(X(j,i))
 | |
| *>
 | |
| *>     The array is indexed by the type of error information as described
 | |
| *>     below. There currently are up to three pieces of information
 | |
| *>     returned.
 | |
| *>
 | |
| *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
 | |
| *>     right-hand side.
 | |
| *>
 | |
| *>     The second index in ERR_BNDS_NORM(:,err) contains the following
 | |
| *>     three fields:
 | |
| *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
 | |
| *>              reciprocal condition number is less than the threshold
 | |
| *>              sqrt(n) * dlamch('Epsilon').
 | |
| *>
 | |
| *>     err = 2 "Guaranteed" error bound: The estimated forward error,
 | |
| *>              almost certainly within a factor of 10 of the true error
 | |
| *>              so long as the next entry is greater than the threshold
 | |
| *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
 | |
| *>              be trusted if the previous boolean is true.
 | |
| *>
 | |
| *>     err = 3  Reciprocal condition number: Estimated normwise
 | |
| *>              reciprocal condition number.  Compared with the threshold
 | |
| *>              sqrt(n) * dlamch('Epsilon') to determine if the error
 | |
| *>              estimate is "guaranteed". These reciprocal condition
 | |
| *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
 | |
| *>              appropriately scaled matrix Z.
 | |
| *>              Let Z = S*A, where S scales each row by a power of the
 | |
| *>              radix so all absolute row sums of Z are approximately 1.
 | |
| *>
 | |
| *>     See Lapack Working Note 165 for further details and extra
 | |
| *>     cautions.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ERR_BNDS_COMP
 | |
| *> \verbatim
 | |
| *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
 | |
| *>     For each right-hand side, this array contains information about
 | |
| *>     various error bounds and condition numbers corresponding to the
 | |
| *>     componentwise relative error, which is defined as follows:
 | |
| *>
 | |
| *>     Componentwise relative error in the ith solution vector:
 | |
| *>                    abs(XTRUE(j,i) - X(j,i))
 | |
| *>             max_j ----------------------
 | |
| *>                         abs(X(j,i))
 | |
| *>
 | |
| *>     The array is indexed by the right-hand side i (on which the
 | |
| *>     componentwise relative error depends), and the type of error
 | |
| *>     information as described below. There currently are up to three
 | |
| *>     pieces of information returned for each right-hand side. If
 | |
| *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
 | |
| *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
 | |
| *>     the first (:,N_ERR_BNDS) entries are returned.
 | |
| *>
 | |
| *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
 | |
| *>     right-hand side.
 | |
| *>
 | |
| *>     The second index in ERR_BNDS_COMP(:,err) contains the following
 | |
| *>     three fields:
 | |
| *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
 | |
| *>              reciprocal condition number is less than the threshold
 | |
| *>              sqrt(n) * dlamch('Epsilon').
 | |
| *>
 | |
| *>     err = 2 "Guaranteed" error bound: The estimated forward error,
 | |
| *>              almost certainly within a factor of 10 of the true error
 | |
| *>              so long as the next entry is greater than the threshold
 | |
| *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
 | |
| *>              be trusted if the previous boolean is true.
 | |
| *>
 | |
| *>     err = 3  Reciprocal condition number: Estimated componentwise
 | |
| *>              reciprocal condition number.  Compared with the threshold
 | |
| *>              sqrt(n) * dlamch('Epsilon') to determine if the error
 | |
| *>              estimate is "guaranteed". These reciprocal condition
 | |
| *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
 | |
| *>              appropriately scaled matrix Z.
 | |
| *>              Let Z = S*(A*diag(x)), where x is the solution for the
 | |
| *>              current right-hand side and S scales each row of
 | |
| *>              A*diag(x) by a power of the radix so all absolute row
 | |
| *>              sums of Z are approximately 1.
 | |
| *>
 | |
| *>     See Lapack Working Note 165 for further details and extra
 | |
| *>     cautions.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NPARAMS
 | |
| *> \verbatim
 | |
| *>          NPARAMS is INTEGER
 | |
| *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
 | |
| *>     PARAMS array is never referenced and default values are used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] PARAMS
 | |
| *> \verbatim
 | |
| *>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
 | |
| *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
 | |
| *>     that entry will be filled with default value used for that
 | |
| *>     parameter.  Only positions up to NPARAMS are accessed; defaults
 | |
| *>     are used for higher-numbered parameters.
 | |
| *>
 | |
| *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
 | |
| *>            refinement or not.
 | |
| *>         Default: 1.0D+0
 | |
| *>            = 0.0 : No refinement is performed, and no error bounds are
 | |
| *>                    computed.
 | |
| *>            = 1.0 : Use the double-precision refinement algorithm,
 | |
| *>                    possibly with doubled-single computations if the
 | |
| *>                    compilation environment does not support DOUBLE
 | |
| *>                    PRECISION.
 | |
| *>              (other values are reserved for future use)
 | |
| *>
 | |
| *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
 | |
| *>            computations allowed for refinement.
 | |
| *>         Default: 10
 | |
| *>         Aggressive: Set to 100 to permit convergence using approximate
 | |
| *>                     factorizations or factorizations other than LU. If
 | |
| *>                     the factorization uses a technique other than
 | |
| *>                     Gaussian elimination, the guarantees in
 | |
| *>                     err_bnds_norm and err_bnds_comp may no longer be
 | |
| *>                     trustworthy.
 | |
| *>
 | |
| *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
 | |
| *>            will attempt to find a solution with small componentwise
 | |
| *>            relative error in the double-precision algorithm.  Positive
 | |
| *>            is true, 0.0 is false.
 | |
| *>         Default: 1.0 (attempt componentwise convergence)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (4*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>       = 0:  Successful exit. The solution to every right-hand side is
 | |
| *>         guaranteed.
 | |
| *>       < 0:  If INFO = -i, the i-th argument had an illegal value
 | |
| *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
 | |
| *>         has been completed, but the factor U is exactly singular, so
 | |
| *>         the solution and error bounds could not be computed. RCOND = 0
 | |
| *>         is returned.
 | |
| *>       = N+J: The solution corresponding to the Jth right-hand side is
 | |
| *>         not guaranteed. The solutions corresponding to other right-
 | |
| *>         hand sides K with K > J may not be guaranteed as well, but
 | |
| *>         only the first such right-hand side is reported. If a small
 | |
| *>         componentwise error is not requested (PARAMS(3) = 0.0) then
 | |
| *>         the Jth right-hand side is the first with a normwise error
 | |
| *>         bound that is not guaranteed (the smallest J such
 | |
| *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
 | |
| *>         the Jth right-hand side is the first with either a normwise or
 | |
| *>         componentwise error bound that is not guaranteed (the smallest
 | |
| *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
 | |
| *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
 | |
| *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
 | |
| *>         about all of the right-hand sides check ERR_BNDS_NORM or
 | |
| *>         ERR_BNDS_COMP.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
 | |
|      $                    R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
 | |
|      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
 | |
|      $                    WORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS, EQUED
 | |
|       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
 | |
|      $                   N_ERR_BNDS
 | |
|       DOUBLE PRECISION   RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * ), IWORK( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 | |
|      $                   X( LDX , * ), WORK( * )
 | |
|       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
 | |
|      $                   ERR_BNDS_NORM( NRHS, * ),
 | |
|      $                   ERR_BNDS_COMP( NRHS, * )
 | |
| *     ..
 | |
| *
 | |
| *  ==================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
 | |
|       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
 | |
|       DOUBLE PRECISION   DZTHRESH_DEFAULT
 | |
|       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
 | |
|       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
 | |
|       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
 | |
|       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
 | |
|       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
 | |
|       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
 | |
|      $                   LA_LINRX_CWISE_I
 | |
|       PARAMETER          ( LA_LINRX_ITREF_I = 1,
 | |
|      $                   LA_LINRX_ITHRESH_I = 2 )
 | |
|       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
 | |
|       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
 | |
|      $                   LA_LINRX_RCOND_I
 | |
|       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
 | |
|       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER(1)       NORM
 | |
|       LOGICAL            ROWEQU, COLEQU, NOTRAN
 | |
|       INTEGER            J, TRANS_TYPE, PREC_TYPE, REF_TYPE
 | |
|       INTEGER            N_NORMS
 | |
|       DOUBLE PRECISION   ANORM, RCOND_TMP
 | |
|       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
 | |
|       LOGICAL            IGNORE_CWISE
 | |
|       INTEGER            ITHRESH
 | |
|       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, DGECON, DLA_GERFSX_EXTENDED
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
 | |
|       EXTERNAL           DLAMCH, DLANGE, DLA_GERCOND
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE, DLA_GERCOND
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            BLAS_FPINFO_X
 | |
|       INTEGER            ILATRANS, ILAPREC
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Check the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       TRANS_TYPE = ILATRANS( TRANS )
 | |
|       REF_TYPE = INT( ITREF_DEFAULT )
 | |
|       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
 | |
|          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
 | |
|             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
 | |
|          ELSE
 | |
|             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Set default parameters.
 | |
| *
 | |
|       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
 | |
|       ITHRESH = INT( ITHRESH_DEFAULT )
 | |
|       RTHRESH = RTHRESH_DEFAULT
 | |
|       UNSTABLE_THRESH = DZTHRESH_DEFAULT
 | |
|       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
 | |
| *
 | |
|       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
 | |
|          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
 | |
|             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
 | |
|          ELSE
 | |
|             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
 | |
|          END IF
 | |
|       END IF
 | |
|       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
 | |
|          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
 | |
|             IF ( IGNORE_CWISE ) THEN
 | |
|                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
 | |
|             ELSE
 | |
|                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
 | |
|             END IF
 | |
|          ELSE
 | |
|             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
 | |
|          END IF
 | |
|       END IF
 | |
|       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
 | |
|          N_NORMS = 0
 | |
|       ELSE IF ( IGNORE_CWISE ) THEN
 | |
|          N_NORMS = 1
 | |
|       ELSE
 | |
|          N_NORMS = 2
 | |
|       END IF
 | |
| *
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
 | |
|       COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
 | |
| *
 | |
| *     Test input parameters.
 | |
| *
 | |
|       IF( TRANS_TYPE.EQ.-1 ) THEN
 | |
|         INFO = -1
 | |
|       ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
 | |
|      $         .NOT.LSAME( EQUED, 'N' ) ) THEN
 | |
|         INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|         INFO = -3
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|         INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|         INFO = -6
 | |
|       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
 | |
|         INFO = -8
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|         INFO = -13
 | |
|       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | |
|         INFO = -15
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|         CALL XERBLA( 'DGERFSX', -INFO )
 | |
|         RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | |
|          RCOND = 1.0D+0
 | |
|          DO J = 1, NRHS
 | |
|             BERR( J ) = 0.0D+0
 | |
|             IF ( N_ERR_BNDS .GE. 1 ) THEN
 | |
|                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I) = 1.0D+0
 | |
|                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
 | |
|             END IF
 | |
|             IF ( N_ERR_BNDS .GE. 2 ) THEN
 | |
|                ERR_BNDS_NORM( J, LA_LINRX_ERR_I) = 0.0D+0
 | |
|                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
 | |
|             END IF
 | |
|             IF ( N_ERR_BNDS .GE. 3 ) THEN
 | |
|                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I) = 1.0D+0
 | |
|                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
 | |
|             END IF
 | |
|          END DO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Default to failure.
 | |
| *
 | |
|       RCOND = 0.0D+0
 | |
|       DO J = 1, NRHS
 | |
|          BERR( J ) = 1.0D+0
 | |
|          IF ( N_ERR_BNDS .GE. 1 ) THEN
 | |
|             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
 | |
|             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
 | |
|          END IF
 | |
|          IF ( N_ERR_BNDS .GE. 2 ) THEN
 | |
|             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
 | |
|             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
 | |
|          END IF
 | |
|          IF ( N_ERR_BNDS .GE. 3 ) THEN
 | |
|             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
 | |
|             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
 | |
|          END IF
 | |
|       END DO
 | |
| *
 | |
| *     Compute the norm of A and the reciprocal of the condition
 | |
| *     number of A.
 | |
| *
 | |
|       IF( NOTRAN ) THEN
 | |
|          NORM = 'I'
 | |
|       ELSE
 | |
|          NORM = '1'
 | |
|       END IF
 | |
|       ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
 | |
|       CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
 | |
| *
 | |
| *     Perform refinement on each right-hand side
 | |
| *
 | |
|       IF ( REF_TYPE .NE. 0 ) THEN
 | |
| 
 | |
|          PREC_TYPE = ILAPREC( 'E' )
 | |
| 
 | |
|          IF ( NOTRAN ) THEN
 | |
|             CALL DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
 | |
|      $           NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B,
 | |
|      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
 | |
|      $           ERR_BNDS_COMP, WORK(N+1), WORK(1), WORK(2*N+1),
 | |
|      $           WORK(1), RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH,
 | |
|      $           IGNORE_CWISE, INFO )
 | |
|          ELSE
 | |
|             CALL DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
 | |
|      $           NRHS, A, LDA, AF, LDAF, IPIV, ROWEQU, R, B,
 | |
|      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
 | |
|      $           ERR_BNDS_COMP, WORK(N+1), WORK(1), WORK(2*N+1),
 | |
|      $           WORK(1), RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH,
 | |
|      $           IGNORE_CWISE, INFO )
 | |
|          END IF
 | |
|       END IF
 | |
| 
 | |
|       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
 | |
|       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
 | |
| *
 | |
| *     Compute scaled normwise condition number cond(A*C).
 | |
| *
 | |
|          IF ( COLEQU .AND. NOTRAN ) THEN
 | |
|             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
 | |
|      $           -1, C, INFO, WORK, IWORK )
 | |
|          ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
 | |
|             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
 | |
|      $           -1, R, INFO, WORK, IWORK )
 | |
|          ELSE
 | |
|             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
 | |
|      $           0, R, INFO, WORK, IWORK )
 | |
|          END IF
 | |
|          DO J = 1, NRHS
 | |
| *
 | |
| *     Cap the error at 1.0.
 | |
| *
 | |
|             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
 | |
|      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
 | |
|      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
 | |
| *
 | |
| *     Threshold the error (see LAWN).
 | |
| *
 | |
|             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
 | |
|                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
 | |
|                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
 | |
|                IF ( INFO .LE. N ) INFO = N + J
 | |
|             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
 | |
|      $     THEN
 | |
|                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
 | |
|                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
 | |
|             END IF
 | |
| *
 | |
| *     Save the condition number.
 | |
| *
 | |
|             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
 | |
|                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
 | |
|             END IF
 | |
|          END DO
 | |
|       END IF
 | |
| 
 | |
|       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
 | |
| *
 | |
| *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
 | |
| *     each right-hand side using the current solution as an estimate of
 | |
| *     the true solution.  If the componentwise error estimate is too
 | |
| *     large, then the solution is a lousy estimate of truth and the
 | |
| *     estimated RCOND may be too optimistic.  To avoid misleading users,
 | |
| *     the inverse condition number is set to 0.0 when the estimated
 | |
| *     cwise error is at least CWISE_WRONG.
 | |
| *
 | |
|          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
 | |
|          DO J = 1, NRHS
 | |
|             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
 | |
|      $           THEN
 | |
|                RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF,
 | |
|      $              IPIV, 1, X(1,J), INFO, WORK, IWORK )
 | |
|             ELSE
 | |
|                RCOND_TMP = 0.0D+0
 | |
|             END IF
 | |
| *
 | |
| *     Cap the error at 1.0.
 | |
| *
 | |
|             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
 | |
|      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
 | |
|      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
 | |
| *
 | |
| *     Threshold the error (see LAWN).
 | |
| *
 | |
|             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
 | |
|                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
 | |
|                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
 | |
|                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
 | |
|      $              .AND. INFO.LT.N + J ) INFO = N + J
 | |
|             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
 | |
|      $              .LT. ERR_LBND ) THEN
 | |
|                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
 | |
|                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
 | |
|             END IF
 | |
| *
 | |
| *     Save the condition number.
 | |
| *
 | |
|             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
 | |
|                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
 | |
|             END IF
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGERFSX
 | |
| *
 | |
|       END
 |