351 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGBEQUB
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGBEQUB + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbequb.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbequb.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbequb.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
 | |
| *                           AMAX, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, KL, KU, LDAB, M, N
 | |
| *       REAL               AMAX, COLCND, ROWCND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               C( * ), R( * )
 | |
| *       COMPLEX            AB( LDAB, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGBEQUB computes row and column scalings intended to equilibrate an
 | |
| *> M-by-N matrix A and reduce its condition number.  R returns the row
 | |
| *> scale factors and C the column scale factors, chosen to try to make
 | |
| *> the largest element in each row and column of the matrix B with
 | |
| *> elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most
 | |
| *> the radix.
 | |
| *>
 | |
| *> R(i) and C(j) are restricted to be a power of the radix between
 | |
| *> SMLNUM = smallest safe number and BIGNUM = largest safe number.  Use
 | |
| *> of these scaling factors is not guaranteed to reduce the condition
 | |
| *> number of A but works well in practice.
 | |
| *>
 | |
| *> This routine differs from CGEEQU by restricting the scaling factors
 | |
| *> to a power of the radix.  Baring over- and underflow, scaling by
 | |
| *> these factors introduces no additional rounding errors.  However, the
 | |
| *> scaled entries' magnitured are no longer approximately 1 but lie
 | |
| *> between sqrt(radix) and 1/sqrt(radix).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
 | |
| *>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
 | |
| *>          The j-th column of A is stored in the j-th column of the
 | |
| *>          array AB as follows:
 | |
| *>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array A.  LDAB >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] R
 | |
| *> \verbatim
 | |
| *>          R is REAL array, dimension (M)
 | |
| *>          If INFO = 0 or INFO > M, R contains the row scale factors
 | |
| *>          for A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (N)
 | |
| *>          If INFO = 0,  C contains the column scale factors for A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ROWCND
 | |
| *> \verbatim
 | |
| *>          ROWCND is REAL
 | |
| *>          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
 | |
| *>          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and
 | |
| *>          AMAX is neither too large nor too small, it is not worth
 | |
| *>          scaling by R.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] COLCND
 | |
| *> \verbatim
 | |
| *>          COLCND is REAL
 | |
| *>          If INFO = 0, COLCND contains the ratio of the smallest
 | |
| *>          C(i) to the largest C(i).  If COLCND >= 0.1, it is not
 | |
| *>          worth scaling by C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AMAX
 | |
| *> \verbatim
 | |
| *>          AMAX is REAL
 | |
| *>          Absolute value of largest matrix element.  If AMAX is very
 | |
| *>          close to overflow or very close to underflow, the matrix
 | |
| *>          should be scaled.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i,  and i is
 | |
| *>                <= M:  the i-th row of A is exactly zero
 | |
| *>                >  M:  the (i-M)-th column of A is exactly zero
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexGBcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
 | |
|      $                    AMAX, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, KL, KU, LDAB, M, N
 | |
|       REAL               AMAX, COLCND, ROWCND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               C( * ), R( * )
 | |
|       COMPLEX            AB( LDAB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, KD
 | |
|       REAL               BIGNUM, RCMAX, RCMIN, SMLNUM, RADIX,
 | |
|      $                   LOGRDX
 | |
|       COMPLEX            ZDUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, LOG, REAL, AIMAG
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KL.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KU.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGBEQUB', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          ROWCND = ONE
 | |
|          COLCND = ONE
 | |
|          AMAX = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.  Assume SMLNUM is a power of the radix.
 | |
| *
 | |
|       SMLNUM = SLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RADIX = SLAMCH( 'B' )
 | |
|       LOGRDX = LOG(RADIX)
 | |
| *
 | |
| *     Compute row scale factors.
 | |
| *
 | |
|       DO 10 I = 1, M
 | |
|          R( I ) = ZERO
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Find the maximum element in each row.
 | |
| *
 | |
|       KD = KU + 1
 | |
|       DO 30 J = 1, N
 | |
|          DO 20 I = MAX( J-KU, 1 ), MIN( J+KL, M )
 | |
|             R( I ) = MAX( R( I ), CABS1( AB( KD+I-J, J ) ) )
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
|       DO I = 1, M
 | |
|          IF( R( I ).GT.ZERO ) THEN
 | |
|             R( I ) = RADIX**INT( LOG( R( I ) ) / LOGRDX )
 | |
|          END IF
 | |
|       END DO
 | |
| *
 | |
| *     Find the maximum and minimum scale factors.
 | |
| *
 | |
|       RCMIN = BIGNUM
 | |
|       RCMAX = ZERO
 | |
|       DO 40 I = 1, M
 | |
|          RCMAX = MAX( RCMAX, R( I ) )
 | |
|          RCMIN = MIN( RCMIN, R( I ) )
 | |
|    40 CONTINUE
 | |
|       AMAX = RCMAX
 | |
| *
 | |
|       IF( RCMIN.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Find the first zero scale factor and return an error code.
 | |
| *
 | |
|          DO 50 I = 1, M
 | |
|             IF( R( I ).EQ.ZERO ) THEN
 | |
|                INFO = I
 | |
|                RETURN
 | |
|             END IF
 | |
|    50    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Invert the scale factors.
 | |
| *
 | |
|          DO 60 I = 1, M
 | |
|             R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        Compute ROWCND = min(R(I)) / max(R(I)).
 | |
| *
 | |
|          ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
 | |
|       END IF
 | |
| *
 | |
| *     Compute column scale factors.
 | |
| *
 | |
|       DO 70 J = 1, N
 | |
|          C( J ) = ZERO
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     Find the maximum element in each column,
 | |
| *     assuming the row scaling computed above.
 | |
| *
 | |
|       DO 90 J = 1, N
 | |
|          DO 80 I = MAX( J-KU, 1 ), MIN( J+KL, M )
 | |
|             C( J ) = MAX( C( J ), CABS1( AB( KD+I-J, J ) )*R( I ) )
 | |
|    80    CONTINUE
 | |
|          IF( C( J ).GT.ZERO ) THEN
 | |
|             C( J ) = RADIX**INT( LOG( C( J ) ) / LOGRDX )
 | |
|          END IF
 | |
|    90 CONTINUE
 | |
| *
 | |
| *     Find the maximum and minimum scale factors.
 | |
| *
 | |
|       RCMIN = BIGNUM
 | |
|       RCMAX = ZERO
 | |
|       DO 100 J = 1, N
 | |
|          RCMIN = MIN( RCMIN, C( J ) )
 | |
|          RCMAX = MAX( RCMAX, C( J ) )
 | |
|   100 CONTINUE
 | |
| *
 | |
|       IF( RCMIN.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Find the first zero scale factor and return an error code.
 | |
| *
 | |
|          DO 110 J = 1, N
 | |
|             IF( C( J ).EQ.ZERO ) THEN
 | |
|                INFO = M + J
 | |
|                RETURN
 | |
|             END IF
 | |
|   110    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Invert the scale factors.
 | |
| *
 | |
|          DO 120 J = 1, N
 | |
|             C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
 | |
|   120    CONTINUE
 | |
| *
 | |
| *        Compute COLCND = min(C(J)) / max(C(J)).
 | |
| *
 | |
|          COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGBEQUB
 | |
| *
 | |
|       END
 |