375 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			375 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLAGV2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagv2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagv2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagv2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
 | |
| *                          CSR, SNR )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDB
 | |
| *       REAL               CSL, CSR, SNL, SNR
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
 | |
| *      $                   B( LDB, * ), BETA( 2 )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
 | |
| *> matrix pencil (A,B) where B is upper triangular. This routine
 | |
| *> computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
 | |
| *> SNR such that
 | |
| *>
 | |
| *> 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
 | |
| *>    types), then
 | |
| *>
 | |
| *>    [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
 | |
| *>    [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
 | |
| *>
 | |
| *>    [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
 | |
| *>    [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],
 | |
| *>
 | |
| *> 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
 | |
| *>    then
 | |
| *>
 | |
| *>    [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
 | |
| *>    [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
 | |
| *>
 | |
| *>    [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
 | |
| *>    [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]
 | |
| *>
 | |
| *>    where b11 >= b22 > 0.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, 2)
 | |
| *>          On entry, the 2 x 2 matrix A.
 | |
| *>          On exit, A is overwritten by the ``A-part'' of the
 | |
| *>          generalized Schur form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          THe leading dimension of the array A.  LDA >= 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB, 2)
 | |
| *>          On entry, the upper triangular 2 x 2 matrix B.
 | |
| *>          On exit, B is overwritten by the ``B-part'' of the
 | |
| *>          generalized Schur form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          THe leading dimension of the array B.  LDB >= 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is REAL array, dimension (2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is REAL array, dimension (2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL array, dimension (2)
 | |
| *>          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
 | |
| *>          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
 | |
| *>          be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CSL
 | |
| *> \verbatim
 | |
| *>          CSL is REAL
 | |
| *>          The cosine of the left rotation matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SNL
 | |
| *> \verbatim
 | |
| *>          SNL is REAL
 | |
| *>          The sine of the left rotation matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CSR
 | |
| *> \verbatim
 | |
| *>          CSR is REAL
 | |
| *>          The cosine of the right rotation matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SNR
 | |
| *> \verbatim
 | |
| *>          SNR is REAL
 | |
| *>          The sine of the right rotation matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realOTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
 | |
|      $                   CSR, SNR )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDB
 | |
|       REAL               CSL, CSR, SNL, SNR
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
 | |
|      $                   B( LDB, * ), BETA( 2 )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
 | |
|      $                   R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
 | |
|      $                   WR2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLAG2, SLARTG, SLASV2, SROT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLAPY2
 | |
|       EXTERNAL           SLAMCH, SLAPY2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'S' )
 | |
|       ULP = SLAMCH( 'P' )
 | |
| *
 | |
| *     Scale A
 | |
| *
 | |
|       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
 | |
|      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
 | |
|       ASCALE = ONE / ANORM
 | |
|       A( 1, 1 ) = ASCALE*A( 1, 1 )
 | |
|       A( 1, 2 ) = ASCALE*A( 1, 2 )
 | |
|       A( 2, 1 ) = ASCALE*A( 2, 1 )
 | |
|       A( 2, 2 ) = ASCALE*A( 2, 2 )
 | |
| *
 | |
| *     Scale B
 | |
| *
 | |
|       BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
 | |
|      $        SAFMIN )
 | |
|       BSCALE = ONE / BNORM
 | |
|       B( 1, 1 ) = BSCALE*B( 1, 1 )
 | |
|       B( 1, 2 ) = BSCALE*B( 1, 2 )
 | |
|       B( 2, 2 ) = BSCALE*B( 2, 2 )
 | |
| *
 | |
| *     Check if A can be deflated
 | |
| *
 | |
|       IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
 | |
|          CSL = ONE
 | |
|          SNL = ZERO
 | |
|          CSR = ONE
 | |
|          SNR = ZERO
 | |
|          A( 2, 1 ) = ZERO
 | |
|          B( 2, 1 ) = ZERO
 | |
|          WI = ZERO
 | |
| *
 | |
| *     Check if B is singular
 | |
| *
 | |
|       ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
 | |
|          CALL SLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
 | |
|          CSR = ONE
 | |
|          SNR = ZERO
 | |
|          CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
 | |
|          CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
 | |
|          A( 2, 1 ) = ZERO
 | |
|          B( 1, 1 ) = ZERO
 | |
|          B( 2, 1 ) = ZERO
 | |
|          WI = ZERO
 | |
| *
 | |
|       ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
 | |
|          CALL SLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
 | |
|          SNR = -SNR
 | |
|          CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
 | |
|          CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
 | |
|          CSL = ONE
 | |
|          SNL = ZERO
 | |
|          A( 2, 1 ) = ZERO
 | |
|          B( 2, 1 ) = ZERO
 | |
|          B( 2, 2 ) = ZERO
 | |
|          WI = ZERO
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        B is nonsingular, first compute the eigenvalues of (A,B)
 | |
| *
 | |
|          CALL SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
 | |
|      $               WI )
 | |
| *
 | |
|          IF( WI.EQ.ZERO ) THEN
 | |
| *
 | |
| *           two real eigenvalues, compute s*A-w*B
 | |
| *
 | |
|             H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
 | |
|             H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
 | |
|             H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
 | |
| *
 | |
|             RR = SLAPY2( H1, H2 )
 | |
|             QQ = SLAPY2( SCALE1*A( 2, 1 ), H3 )
 | |
| *
 | |
|             IF( RR.GT.QQ ) THEN
 | |
| *
 | |
| *              find right rotation matrix to zero 1,1 element of
 | |
| *              (sA - wB)
 | |
| *
 | |
|                CALL SLARTG( H2, H1, CSR, SNR, T )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              find right rotation matrix to zero 2,1 element of
 | |
| *              (sA - wB)
 | |
| *
 | |
|                CALL SLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|             SNR = -SNR
 | |
|             CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
 | |
|             CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
 | |
| *
 | |
| *           compute inf norms of A and B
 | |
| *
 | |
|             H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
 | |
|      $           ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
 | |
|             H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
 | |
|      $           ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
 | |
| *
 | |
|             IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
 | |
| *
 | |
| *              find left rotation matrix Q to zero out B(2,1)
 | |
| *
 | |
|                CALL SLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              find left rotation matrix Q to zero out A(2,1)
 | |
| *
 | |
|                CALL SLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|             CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
 | |
|             CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
 | |
| *
 | |
|             A( 2, 1 ) = ZERO
 | |
|             B( 2, 1 ) = ZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           a pair of complex conjugate eigenvalues
 | |
| *           first compute the SVD of the matrix B
 | |
| *
 | |
|             CALL SLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
 | |
|      $                   CSR, SNL, CSL )
 | |
| *
 | |
| *           Form (A,B) := Q(A,B)Z**T where Q is left rotation matrix and
 | |
| *           Z is right rotation matrix computed from SLASV2
 | |
| *
 | |
|             CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
 | |
|             CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
 | |
|             CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
 | |
|             CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
 | |
| *
 | |
|             B( 2, 1 ) = ZERO
 | |
|             B( 1, 2 ) = ZERO
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Unscaling
 | |
| *
 | |
|       A( 1, 1 ) = ANORM*A( 1, 1 )
 | |
|       A( 2, 1 ) = ANORM*A( 2, 1 )
 | |
|       A( 1, 2 ) = ANORM*A( 1, 2 )
 | |
|       A( 2, 2 ) = ANORM*A( 2, 2 )
 | |
|       B( 1, 1 ) = BNORM*B( 1, 1 )
 | |
|       B( 2, 1 ) = BNORM*B( 2, 1 )
 | |
|       B( 1, 2 ) = BNORM*B( 1, 2 )
 | |
|       B( 2, 2 ) = BNORM*B( 2, 2 )
 | |
| *
 | |
|       IF( WI.EQ.ZERO ) THEN
 | |
|          ALPHAR( 1 ) = A( 1, 1 )
 | |
|          ALPHAR( 2 ) = A( 2, 2 )
 | |
|          ALPHAI( 1 ) = ZERO
 | |
|          ALPHAI( 2 ) = ZERO
 | |
|          BETA( 1 ) = B( 1, 1 )
 | |
|          BETA( 2 ) = B( 2, 2 )
 | |
|       ELSE
 | |
|          ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
 | |
|          ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
 | |
|          ALPHAR( 2 ) = ALPHAR( 1 )
 | |
|          ALPHAI( 2 ) = -ALPHAI( 1 )
 | |
|          BETA( 1 ) = ONE
 | |
|          BETA( 2 ) = ONE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLAGV2
 | |
| *
 | |
|       END
 |