148 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLA_GERPVGRW multiplies a square real matrix by a complex matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLA_GERPVGRW + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gerpvgrw.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gerpvgrw.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gerpvgrw.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL FUNCTION CLA_GERPVGRW( N, NCOLS, A, LDA, AF, LDAF )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            N, NCOLS, LDA, LDAF
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), AF( LDAF, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> 
 | 
						|
*> CLA_GERPVGRW computes the reciprocal pivot growth factor
 | 
						|
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
 | 
						|
*> much less than 1, the stability of the LU factorization of the
 | 
						|
*> (equilibrated) matrix A could be poor. This also means that the
 | 
						|
*> solution X, estimated condition numbers, and error bounds could be
 | 
						|
*> unreliable.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>     The number of linear equations, i.e., the order of the
 | 
						|
*>     matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NCOLS
 | 
						|
*> \verbatim
 | 
						|
*>          NCOLS is INTEGER
 | 
						|
*>     The number of columns of the matrix A. NCOLS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>     On entry, the N-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>     The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is COMPLEX array, dimension (LDAF,N)
 | 
						|
*>     The factors L and U from the factorization
 | 
						|
*>     A = P*L*U as computed by CGETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAF
 | 
						|
*> \verbatim
 | 
						|
*>          LDAF is INTEGER
 | 
						|
*>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL FUNCTION CLA_GERPVGRW( N, NCOLS, A, LDA, AF, LDAF )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            N, NCOLS, LDA, LDAF
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), AF( LDAF, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      REAL               AMAX, UMAX, RPVGRW
 | 
						|
      COMPLEX            ZDUM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, ABS, REAL, AIMAG
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function Definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RPVGRW = 1.0
 | 
						|
 | 
						|
      DO J = 1, NCOLS
 | 
						|
         AMAX = 0.0
 | 
						|
         UMAX = 0.0
 | 
						|
         DO I = 1, N
 | 
						|
            AMAX = MAX( CABS1( A( I, J ) ), AMAX )
 | 
						|
         END DO
 | 
						|
         DO I = 1, J
 | 
						|
            UMAX = MAX( CABS1( AF( I, J ) ), UMAX )
 | 
						|
         END DO
 | 
						|
         IF ( UMAX /= 0.0 ) THEN
 | 
						|
            RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | 
						|
         END IF
 | 
						|
      END DO
 | 
						|
      CLA_GERPVGRW = RPVGRW
 | 
						|
      END
 |