OpenBLAS/ztest/gemv.c

634 lines
15 KiB
C

/***************************************************************************
Copyright (c) 2014, The OpenBLAS Project
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the OpenBLAS project nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#ifdef __CYGWIN32__
#include <sys/time.h>
#endif
#include "common.h"
#define SINGLE_EPS 1e-04
#define DOUBLE_EPS 1e-13
int assert_dbl_near(double exp, double real, double tol) {
double diff = exp - real;
double absdiff = diff;
/* avoid using fabs and linking with a math lib */
if(diff < 0) {
absdiff *= -1;
}
if (absdiff > tol) {
return 0;
}
return 1;
}
#ifdef COMPLEX
int zgemv_n_c(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y)
{
BLASLONG i;
BLASLONG ix, iy;
BLASLONG j;
FLOAT *a_ptr;
FLOAT temp_r, temp_i;
BLASLONG inc_x2, inc_y2;
BLASLONG lda2;
BLASLONG i2;
lda2 = 2 * lda;
ix = 0;
a_ptr = a;
if (inc_x == 1 && inc_y == 1)
{
for (j = 0; j<n; j++)
{
#if !defined(XCONJ)
temp_r = alpha_r * x[ix] - alpha_i * x[ix + 1];
temp_i = alpha_r * x[ix + 1] + alpha_i * x[ix];
#else
temp_r = alpha_r * x[ix] + alpha_i * x[ix + 1];
temp_i = alpha_r * x[ix + 1] - alpha_i * x[ix];
#endif
iy = 0;
i2 = 0;
for (i = 0; i<m; i++)
{
#if !defined(CONJ)
#if !defined(XCONJ)
y[iy] += temp_r * a_ptr[i2] - temp_i * a_ptr[i2 + 1];
y[iy + 1] += temp_r * a_ptr[i2 + 1] + temp_i * a_ptr[i2];
#else
y[iy] += temp_r * a_ptr[i2] + temp_i * a_ptr[i2 + 1];
y[iy + 1] += temp_r * a_ptr[i2 + 1] - temp_i * a_ptr[i2];
#endif
#else
#if !defined(XCONJ)
y[iy] += temp_r * a_ptr[i2] + temp_i * a_ptr[i2 + 1];
y[iy + 1] -= temp_r * a_ptr[i2 + 1] - temp_i * a_ptr[i2];
#else
y[iy] += temp_r * a_ptr[i2] - temp_i * a_ptr[i2 + 1];
y[iy + 1] -= temp_r * a_ptr[i2 + 1] + temp_i * a_ptr[i2];
#endif
#endif
i2 += 2;
iy += 2;
}
a_ptr += lda2;
ix += 2;
}
return(0);
}
inc_x2 = 2 * inc_x;
inc_y2 = 2 * inc_y;
for (j = 0; j<n; j++)
{
#if !defined(XCONJ)
temp_r = alpha_r * x[ix] - alpha_i * x[ix + 1];
temp_i = alpha_r * x[ix + 1] + alpha_i * x[ix];
#else
temp_r = alpha_r * x[ix] + alpha_i * x[ix + 1];
temp_i = alpha_r * x[ix + 1] - alpha_i * x[ix];
#endif
iy = 0;
i2 = 0;
for (i = 0; i<m; i++)
{
#if !defined(CONJ)
#if !defined(XCONJ)
y[iy] += temp_r * a_ptr[i2] - temp_i * a_ptr[i2 + 1];
y[iy + 1] += temp_r * a_ptr[i2 + 1] + temp_i * a_ptr[i2];
#else
y[iy] += temp_r * a_ptr[i2] + temp_i * a_ptr[i2 + 1];
y[iy + 1] += temp_r * a_ptr[i2 + 1] - temp_i * a_ptr[i2];
#endif
#else
#if !defined(XCONJ)
y[iy] += temp_r * a_ptr[i2] + temp_i * a_ptr[i2 + 1];
y[iy + 1] -= temp_r * a_ptr[i2 + 1] - temp_i * a_ptr[i2];
#else
y[iy] += temp_r * a_ptr[i2] - temp_i * a_ptr[i2 + 1];
y[iy + 1] -= temp_r * a_ptr[i2 + 1] + temp_i * a_ptr[i2];
#endif
#endif
i2 += 2;
iy += inc_y2;
}
a_ptr += lda2;
ix += inc_x2;
}
return(0);
}
int zgemv_t_c(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y)
{
BLASLONG i;
BLASLONG ix,iy;
BLASLONG j;
FLOAT *a_ptr;
FLOAT temp_r,temp_i;
BLASLONG inc_x2,inc_y2;
BLASLONG lda2;
BLASLONG i2;
lda2 = 2*lda;
iy = 0;
a_ptr = a;
if ( inc_x == 1 && inc_y == 1 )
{
for (j=0; j<n; j++)
{
temp_r = 0.0;
temp_i = 0.0;
ix = 0;
i2=0;
for (i=0; i<m; i++)
{
#if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
temp_r += a_ptr[i2] * x[ix] - a_ptr[i2+1] * x[ix+1];
temp_i += a_ptr[i2] * x[ix+1] + a_ptr[i2+1] * x[ix];
#else
temp_r += a_ptr[i2] * x[ix] + a_ptr[i2+1] * x[ix+1];
temp_i += a_ptr[i2] * x[ix+1] - a_ptr[i2+1] * x[ix];
#endif
i2 += 2;
ix += 2;
}
#if !defined(XCONJ)
y[iy] += alpha_r * temp_r - alpha_i * temp_i;
y[iy+1] += alpha_r * temp_i + alpha_i * temp_r;
#else
y[iy] += alpha_r * temp_r + alpha_i * temp_i;
y[iy+1] -= alpha_r * temp_i - alpha_i * temp_r;
#endif
a_ptr += lda2;
iy += 2;
}
return(0);
}
inc_x2 = 2 * inc_x;
inc_y2 = 2 * inc_y;
for (j=0; j<n; j++)
{
temp_r = 0.0;
temp_i = 0.0;
ix = 0;
i2=0;
for (i=0; i<m; i++)
{
#if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
temp_r += a_ptr[i2] * x[ix] - a_ptr[i2+1] * x[ix+1];
temp_i += a_ptr[i2] * x[ix+1] + a_ptr[i2+1] * x[ix];
#else
temp_r += a_ptr[i2] * x[ix] + a_ptr[i2+1] * x[ix+1];
temp_i += a_ptr[i2] * x[ix+1] - a_ptr[i2+1] * x[ix];
#endif
i2 += 2;
ix += inc_x2;
}
#if !defined(XCONJ)
y[iy] += alpha_r * temp_r - alpha_i * temp_i;
y[iy+1] += alpha_r * temp_i + alpha_i * temp_r;
#else
y[iy] += alpha_r * temp_r + alpha_i * temp_i;
y[iy+1] -= alpha_r * temp_i - alpha_i * temp_r;
#endif
a_ptr += lda2;
iy += inc_y2;
}
return(0);
}
#else
int gemv_n_c(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y)
{
BLASLONG i;
BLASLONG ix,iy;
BLASLONG j;
FLOAT *a_ptr;
FLOAT temp;
ix = 0;
a_ptr = a;
for (j=0; j<n; j++)
{
temp = alpha * x[ix];
iy = 0;
for (i=0; i<m; i++)
{
y[iy] += temp * a_ptr[i];
iy += inc_y;
}
a_ptr += lda;
ix += inc_x;
}
return(0);
}
int gemv_t_c(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y)
{
BLASLONG i;
BLASLONG ix,iy;
BLASLONG j;
FLOAT *a_ptr;
FLOAT temp;
iy = 0;
a_ptr = a;
for (j=0; j<n; j++)
{
temp = 0.0;
ix = 0;
for (i=0; i<m; i++)
{
temp += a_ptr[i] * x[ix];
ix += inc_x;
}
y[iy] += alpha * temp;
iy += inc_y;
a_ptr += lda;
}
return(0);
}
#endif
#undef GEMV
#ifndef COMPLEX
#ifdef DOUBLE
#define GEMV BLASFUNC(dgemv)
#else
#define GEMV BLASFUNC(sgemv)
#endif
#else
#ifdef DOUBLE
#define GEMV BLASFUNC(zgemv)
#else
#define GEMV BLASFUNC(cgemv)
#endif
#endif
#if defined(__WIN32__) || defined(__WIN64__)
#ifndef DELTA_EPOCH_IN_MICROSECS
#define DELTA_EPOCH_IN_MICROSECS 11644473600000000ULL
#endif
int gettimeofday(struct timeval *tv, void *tz){
FILETIME ft;
unsigned __int64 tmpres = 0;
static int tzflag;
if (NULL != tv)
{
GetSystemTimeAsFileTime(&ft);
tmpres |= ft.dwHighDateTime;
tmpres <<= 32;
tmpres |= ft.dwLowDateTime;
/*converting file time to unix epoch*/
tmpres /= 10; /*convert into microseconds*/
tmpres -= DELTA_EPOCH_IN_MICROSECS;
tv->tv_sec = (long)(tmpres / 1000000UL);
tv->tv_usec = (long)(tmpres % 1000000UL);
}
return 0;
}
#endif
#if !defined(__WIN32__) && !defined(__WIN64__) && !defined(__CYGWIN32__) && 0
static void *huge_malloc(BLASLONG size){
int shmid;
void *address;
#ifndef SHM_HUGETLB
#define SHM_HUGETLB 04000
#endif
if ((shmid =shmget(IPC_PRIVATE,
(size + HUGE_PAGESIZE) & ~(HUGE_PAGESIZE - 1),
SHM_HUGETLB | IPC_CREAT |0600)) < 0) {
printf( "Memory allocation failed(shmget).\n");
exit(1);
}
address = shmat(shmid, NULL, SHM_RND);
if ((BLASLONG)address == -1){
printf( "Memory allocation failed(shmat).\n");
exit(1);
}
shmctl(shmid, IPC_RMID, 0);
return address;
}
#define malloc huge_malloc
#endif
int main(int argc, char *argv[]){
FLOAT *a, *x, *y, *y_c;
FLOAT alpha[] = {1.0, 1.0};
FLOAT beta [] = {1.0, 0.0};
char trans='N';
blasint m, i, j;
blasint inc_x=1,inc_y=1;
blasint n=0;
int has_param_n = 0;
int has_param_m = 0;
int loops = 1;
int l;
char *p;
int from = 1;
int to = 200;
int step = 1;
struct timeval start, stop;
double time1,timeg,timeg_c;
blasint y_size;
blasint iy;
int test = 1;
argc--;argv++;
if (argc > 0) { from = atol(*argv); argc--; argv++;}
if (argc > 0) { to = MAX(atol(*argv), from); argc--; argv++;}
if (argc > 0) { step = atol(*argv); argc--; argv++;}
int tomax = to;
if ((p = getenv("OPENBLAS_LOOPS"))) loops = atoi(p);
if ((p = getenv("OPENBLAS_INCX"))) inc_x = atoi(p);
if ((p = getenv("OPENBLAS_INCY"))) inc_y = atoi(p);
if ((p = getenv("OPENBLAS_TRANS"))) trans=*p;
if ((p = getenv("OPENBLAS_PARAM_N"))) {
n = atoi(p);
if ((n>0)) has_param_n = 1;
if ( n > tomax ) tomax = n;
}
if ( has_param_n == 0 )
if ((p = getenv("OPENBLAS_PARAM_M"))) {
m = atoi(p);
if ((m>0)) has_param_m = 1;
if ( m > tomax ) tomax = m;
}
fprintf(stderr, "From : %3d To : %3d Step = %3d Trans = '%c' Inc_x = %d Inc_y = %d Loops = %d\n", from, to, step,trans,inc_x,inc_y,loops);
if (( a = (FLOAT *)malloc(sizeof(FLOAT) * tomax * tomax * COMPSIZE)) == NULL){
fprintf(stderr,"Out of Memory!!\n");exit(1);
}
if (( x = (FLOAT *)malloc(sizeof(FLOAT) * tomax * abs(inc_x) * COMPSIZE)) == NULL){
fprintf(stderr,"Out of Memory!!\n");exit(1);
}
if (( y = (FLOAT *)malloc(sizeof(FLOAT) * tomax * abs(inc_y) * COMPSIZE)) == NULL){
fprintf(stderr,"Out of Memory!!\n");exit(1);
}
if (( y_c = (FLOAT *)malloc(sizeof(FLOAT) * tomax * abs(inc_y) * COMPSIZE)) == NULL){
fprintf(stderr,"Out of Memory!!\n");exit(1);
}
#ifdef linux
srandom(getpid());
#endif
fprintf(stderr, " SIZE Flops Time CTime Test\n");
if (has_param_m == 0)
{
for(m = from; m <= to; m += step)
{
timeg=0;
timeg_c=0;
if ( has_param_n == 0 ) n = m;
fprintf(stderr, " %6dx%d :", (int)m,(int)n);
for(j = 0; j < m; j++){
for(i = 0; i < n * COMPSIZE; i++){
a[i + j * m * COMPSIZE] = ((FLOAT) rand() / (FLOAT) RAND_MAX) - 0.5;
}
}
for (l=0; l<loops; l++)
{
for(i = 0; i < n * COMPSIZE * abs(inc_x); i++){
x[i] = ((FLOAT) rand() / (FLOAT) RAND_MAX) - 0.5;
}
for(i = 0; i < n * COMPSIZE * abs(inc_y); i++){
y[i] = ((FLOAT) rand() / (FLOAT) RAND_MAX) - 0.5;
y_c[i]= y[i];
}
gettimeofday( &start, (struct timezone *)0);
GEMV (&trans, &m, &n, alpha, a, &m, x, &inc_x, beta, y, &inc_y );
gettimeofday( &stop, (struct timezone *)0);
time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6;
timeg += time1;
gettimeofday( &start, (struct timezone *)0);
#ifdef COMPLEX
if (trans == 'N')
zgemv_n_c(m, n, 0, alpha[0], alpha[1], a, m, x, inc_x, y_c, inc_y);
else
zgemv_t_c(m, n, 0, alpha[0], alpha[1], a, m, x, inc_x, y_c, inc_y);
#else
if (trans == 'N')
gemv_n_c(m, n, 0, *alpha, a, m, x, inc_x, y_c, inc_y);
else
gemv_t_c(m, n, 0, *alpha, a, m, x, inc_x, y_c, inc_y);
#endif
gettimeofday( &stop, (struct timezone *)0);
time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6;
timeg_c += time1;
if (trans == 'N')
y_size = m;
else
y_size = n;
iy = 0;
for (i = 0; i < y_size; i++)
{
#ifdef COMPLEX
test &= assert_dbl_near(y[iy], y_c[iy], SINGLE_EPS);
test &= assert_dbl_near(y[iy + 1], y_c[iy + 1], SINGLE_EPS);
iy += (inc_y * 2);
#else
test &= assert_dbl_near(y[iy], y_c[iy], SINGLE_EPS);
iy += inc_y;
#endif
}
}
timeg /= loops;
timeg_c /= loops;
fprintf(stderr, "%10.2f MFlops %10.6f sec %10.6f sec %s\n", 2. * (double)m / timeg * 1.e-6, timeg, timeg_c, test ? "PASS" : "FAILD");
}
}
else
{
for(n = from; n <= to; n += step)
{
timeg=0;
timeg_c=0;
fprintf(stderr, " %6dx%d :", (int)m,(int)n);
for(j = 0; j < m; j++){
for(i = 0; i < n * COMPSIZE; i++){
a[i + j * m * COMPSIZE] = ((FLOAT) rand() / (FLOAT) RAND_MAX) - 0.5;
}
}
for (l=0; l<loops; l++)
{
for(i = 0; i < n * COMPSIZE * abs(inc_x); i++){
x[i] = ((FLOAT) rand() / (FLOAT) RAND_MAX) - 0.5;
}
for(i = 0; i < n * COMPSIZE * abs(inc_y); i++){
y[i] = ((FLOAT) rand() / (FLOAT) RAND_MAX) - 0.5;
y_c[i]= y[i];
}
gettimeofday( &start, (struct timezone *)0);
GEMV (&trans, &m, &n, alpha, a, &m, x, &inc_x, beta, y, &inc_y );
gettimeofday( &stop, (struct timezone *)0);
time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6;
timeg += time1;
gettimeofday( &start, (struct timezone *)0);
#ifdef COMPLEX
if (trans == 'N')
zgemv_n_c(m, n, 0, alpha[0], alpha[1], a, m, x, inc_x, y_c, inc_y);
else
zgemv_t_c(m, n, 0, alpha[0], alpha[1], a, m, x, inc_x, y_c, inc_y);
#else
if (trans == 'N')
gemv_n_c(m, n, 0, *alpha, a, m, x, inc_x, y_c, inc_y);
else
gemv_t_c(m, n, 0, *alpha, a, m, x, inc_x, y_c, inc_y);
#endif
gettimeofday( &stop, (struct timezone *)0);
time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6;
timeg_c += time1;
if (trans == 'N')
y_size = m;
else
y_size = n;
iy = 0;
for (i = 0; i < y_size; i++)
{
#ifdef COMPLEX
test &= assert_dbl_near(y[iy], y_c[iy], SINGLE_EPS);
test &= assert_dbl_near(y[iy + 1], y_c[iy + 1], SINGLE_EPS);
iy += (inc_y * 2);
#else
test &= assert_dbl_near(y[iy], y_c[iy], SINGLE_EPS);
iy += inc_y;
#endif
}
}
timeg /= loops;
timeg_c /= loops;
fprintf(stderr, "%10.2f MFlops %10.6f sec %10.6f sec %s\n", 2. * (double)m / timeg * 1.e-6, timeg, timeg_c, test ? "PASS" : "FAILD");
}
}
return 0;
}
// void main(int argc, char *argv[]) __attribute__((weak, alias("MAIN__")));