497 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			497 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLASYF_AA
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLASYF_AA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_aa.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_aa.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_aa.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
 | |
| *                             H, LDH, WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            J1, M, NB, LDA, LDH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX*16         A( LDA, * ), H( LDH, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLATRF_AA factorizes a panel of a complex symmetric matrix A using
 | |
| *> the Aasen's algorithm. The panel consists of a set of NB rows of A
 | |
| *> when UPLO is U, or a set of NB columns when UPLO is L.
 | |
| *>
 | |
| *> In order to factorize the panel, the Aasen's algorithm requires the
 | |
| *> last row, or column, of the previous panel. The first row, or column,
 | |
| *> of A is set to be the first row, or column, of an identity matrix,
 | |
| *> which is used to factorize the first panel.
 | |
| *>
 | |
| *> The resulting J-th row of U, or J-th column of L, is stored in the
 | |
| *> (J-1)-th row, or column, of A (without the unit diagonals), while
 | |
| *> the diagonal and subdiagonal of A are overwritten by those of T.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] J1
 | |
| *> \verbatim
 | |
| *>          J1 is INTEGER
 | |
| *>          The location of the first row, or column, of the panel
 | |
| *>          within the submatrix of A, passed to this routine, e.g.,
 | |
| *>          when called by ZSYTRF_AA, for the first panel, J1 is 1,
 | |
| *>          while for the remaining panels, J1 is 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The dimension of the submatrix. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The dimension of the panel to be facotorized.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,M) for
 | |
| *>          the first panel, while dimension (LDA,M+1) for the
 | |
| *>          remaining panels.
 | |
| *>
 | |
| *>          On entry, A contains the last row, or column, of
 | |
| *>          the previous panel, and the trailing submatrix of A
 | |
| *>          to be factorized, except for the first panel, only
 | |
| *>          the panel is passed.
 | |
| *>
 | |
| *>          On exit, the leading panel is factorized.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (M)
 | |
| *>          Details of the row and column interchanges,
 | |
| *>          the row and column k were interchanged with the row and
 | |
| *>          column IPIV(k).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] H
 | |
| *> \verbatim
 | |
| *>          H is COMPLEX*16 workspace, dimension (LDH,NB).
 | |
| *>
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is INTEGER
 | |
| *>          The leading dimension of the workspace H. LDH >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 workspace, dimension (M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16SYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
 | |
|      $                         H, LDH, WORK )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            M, NB, J1, LDA, LDH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX*16         A( LDA, * ), H( LDH, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            J, K, K1, I1, I2, MJ
 | |
|       COMPLEX*16         PIV, ALPHA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IZAMAX, ILAENV
 | |
|       EXTERNAL           LSAME, ILAENV, IZAMAX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMV, ZAXPY, ZSCAL, ZCOPY, ZSWAP, ZLASET,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       J = 1
 | |
| *
 | |
| *     K1 is the first column of the panel to be factorized
 | |
| *     i.e.,  K1 is 2 for the first block column, and 1 for the rest of the blocks
 | |
| *
 | |
|       K1 = (2-J1)+1
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *        .....................................................
 | |
| *        Factorize A as U**T*D*U using the upper triangle of A
 | |
| *        .....................................................
 | |
| *
 | |
|  10      CONTINUE
 | |
|          IF ( J.GT.MIN(M, NB) )
 | |
|      $      GO TO 20
 | |
| *
 | |
| *        K is the column to be factorized
 | |
| *         when being called from ZSYTRF_AA,
 | |
| *         > for the first block column, J1 is 1, hence J1+J-1 is J,
 | |
| *         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
 | |
| *
 | |
|          K = J1+J-1
 | |
|          IF( J.EQ.M ) THEN
 | |
| *
 | |
| *            Only need to compute T(J, J)
 | |
| *
 | |
|              MJ = 1
 | |
|          ELSE
 | |
|              MJ = M-J+1
 | |
|          END IF
 | |
| *
 | |
| *        H(J:M, J) := A(J, J:M) - H(J:M, 1:(J-1)) * L(J1:(J-1), J),
 | |
| *         where H(J:M, J) has been initialized to be A(J, J:M)
 | |
| *
 | |
|          IF( K.GT.2 ) THEN
 | |
| *
 | |
| *        K is the column to be factorized
 | |
| *         > for the first block column, K is J, skipping the first two
 | |
| *           columns
 | |
| *         > for the rest of the columns, K is J+1, skipping only the
 | |
| *           first column
 | |
| *
 | |
|             CALL ZGEMV( 'No transpose', MJ, J-K1,
 | |
|      $                 -ONE, H( J, K1 ), LDH,
 | |
|      $                       A( 1, J ), 1,
 | |
|      $                  ONE, H( J, J ), 1 )
 | |
|          END IF
 | |
| *
 | |
| *        Copy H(i:M, i) into WORK
 | |
| *
 | |
|          CALL ZCOPY( MJ, H( J, J ), 1, WORK( 1 ), 1 )
 | |
| *
 | |
|          IF( J.GT.K1 ) THEN
 | |
| *
 | |
| *           Compute WORK := WORK - L(J-1, J:M) * T(J-1,J),
 | |
| *            where A(J-1, J) stores T(J-1, J) and A(J-2, J:M) stores U(J-1, J:M)
 | |
| *
 | |
|             ALPHA = -A( K-1, J )
 | |
|             CALL ZAXPY( MJ, ALPHA, A( K-2, J ), LDA, WORK( 1 ), 1 )
 | |
|          END IF
 | |
| *
 | |
| *        Set A(J, J) = T(J, J)
 | |
| *
 | |
|          A( K, J ) = WORK( 1 )
 | |
| *
 | |
|          IF( J.LT.M ) THEN
 | |
| *
 | |
| *           Compute WORK(2:M) = T(J, J) L(J, (J+1):M)
 | |
| *            where A(J, J) stores T(J, J) and A(J-1, (J+1):M) stores U(J, (J+1):M)
 | |
| *
 | |
|             IF( K.GT.1 ) THEN
 | |
|                ALPHA = -A( K, J )
 | |
|                CALL ZAXPY( M-J, ALPHA, A( K-1, J+1 ), LDA,
 | |
|      $                                 WORK( 2 ), 1 )
 | |
|             ENDIF
 | |
| *
 | |
| *           Find max(|WORK(2:M)|)
 | |
| *
 | |
|             I2 = IZAMAX( M-J, WORK( 2 ), 1 ) + 1
 | |
|             PIV = WORK( I2 )
 | |
| *
 | |
| *           Apply symmetric pivot
 | |
| *
 | |
|             IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
 | |
| *
 | |
| *              Swap WORK(I1) and WORK(I2)
 | |
| *
 | |
|                I1 = 2
 | |
|                WORK( I2 ) = WORK( I1 )
 | |
|                WORK( I1 ) = PIV
 | |
| *
 | |
| *              Swap A(I1, I1+1:M) with A(I1+1:M, I2)
 | |
| *
 | |
|                I1 = I1+J-1
 | |
|                I2 = I2+J-1
 | |
|                CALL ZSWAP( I2-I1-1, A( J1+I1-1, I1+1 ), LDA,
 | |
|      $                              A( J1+I1, I2 ), 1 )
 | |
| *
 | |
| *              Swap A(I1, I2+1:M) with A(I2, I2+1:M)
 | |
| *
 | |
|                IF( I2.LT.M )
 | |
|      $            CALL ZSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
 | |
|      $                              A( J1+I2-1, I2+1 ), LDA )
 | |
| *
 | |
| *              Swap A(I1, I1) with A(I2,I2)
 | |
| *
 | |
|                PIV = A( I1+J1-1, I1 )
 | |
|                A( J1+I1-1, I1 ) = A( J1+I2-1, I2 )
 | |
|                A( J1+I2-1, I2 ) = PIV
 | |
| *
 | |
| *              Swap H(I1, 1:J1) with H(I2, 1:J1)
 | |
| *
 | |
|                CALL ZSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
 | |
|                IPIV( I1 ) = I2
 | |
| *
 | |
|                IF( I1.GT.(K1-1) ) THEN
 | |
| *
 | |
| *                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
 | |
| *                  skipping the first column
 | |
| *
 | |
|                   CALL ZSWAP( I1-K1+1, A( 1, I1 ), 1,
 | |
|      $                                 A( 1, I2 ), 1 )
 | |
|                END IF
 | |
|             ELSE
 | |
|                IPIV( J+1 ) = J+1
 | |
|             ENDIF
 | |
| *
 | |
| *           Set A(J, J+1) = T(J, J+1)
 | |
| *
 | |
|             A( K, J+1 ) = WORK( 2 )
 | |
| *
 | |
|             IF( J.LT.NB ) THEN
 | |
| *
 | |
| *              Copy A(J+1:M, J+1) into H(J:M, J),
 | |
| *
 | |
|                CALL ZCOPY( M-J, A( K+1, J+1 ), LDA,
 | |
|      $                          H( J+1, J+1 ), 1 )
 | |
|             END IF
 | |
| *
 | |
| *           Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
 | |
| *            where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
 | |
| *
 | |
|             IF( J.LT.(M-1) ) THEN
 | |
|                IF( A( K, J+1 ).NE.ZERO ) THEN
 | |
|                   ALPHA = ONE / A( K, J+1 )
 | |
|                   CALL ZCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
 | |
|                   CALL ZSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
 | |
|                ELSE
 | |
|                   CALL ZLASET( 'Full', 1, M-J-1, ZERO, ZERO,
 | |
|      $                         A( K, J+2 ), LDA)
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|          J = J + 1
 | |
|          GO TO 10
 | |
|  20      CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        .....................................................
 | |
| *        Factorize A as L*D*L**T using the lower triangle of A
 | |
| *        .....................................................
 | |
| *
 | |
|  30      CONTINUE
 | |
|          IF( J.GT.MIN( M, NB ) )
 | |
|      $      GO TO 40
 | |
| *
 | |
| *        K is the column to be factorized
 | |
| *         when being called from ZSYTRF_AA,
 | |
| *         > for the first block column, J1 is 1, hence J1+J-1 is J,
 | |
| *         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
 | |
| *
 | |
|          K = J1+J-1
 | |
|          IF( J.EQ.M ) THEN
 | |
| *
 | |
| *            Only need to compute T(J, J)
 | |
| *
 | |
|              MJ = 1
 | |
|          ELSE
 | |
|              MJ = M-J+1
 | |
|          END IF
 | |
| *
 | |
| *        H(J:M, J) := A(J:M, J) - H(J:M, 1:(J-1)) * L(J, J1:(J-1))^T,
 | |
| *         where H(J:M, J) has been initialized to be A(J:M, J)
 | |
| *
 | |
|          IF( K.GT.2 ) THEN
 | |
| *
 | |
| *        K is the column to be factorized
 | |
| *         > for the first block column, K is J, skipping the first two
 | |
| *           columns
 | |
| *         > for the rest of the columns, K is J+1, skipping only the
 | |
| *           first column
 | |
| *
 | |
|             CALL ZGEMV( 'No transpose', MJ, J-K1,
 | |
|      $                 -ONE, H( J, K1 ), LDH,
 | |
|      $                       A( J, 1 ), LDA,
 | |
|      $                  ONE, H( J, J ), 1 )
 | |
|          END IF
 | |
| *
 | |
| *        Copy H(J:M, J) into WORK
 | |
| *
 | |
|          CALL ZCOPY( MJ, H( J, J ), 1, WORK( 1 ), 1 )
 | |
| *
 | |
|          IF( J.GT.K1 ) THEN
 | |
| *
 | |
| *           Compute WORK := WORK - L(J:M, J-1) * T(J-1,J),
 | |
| *            where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1)
 | |
| *
 | |
|             ALPHA = -A( J, K-1 )
 | |
|             CALL ZAXPY( MJ, ALPHA, A( J, K-2 ), 1, WORK( 1 ), 1 )
 | |
|          END IF
 | |
| *
 | |
| *        Set A(J, J) = T(J, J)
 | |
| *
 | |
|          A( J, K ) = WORK( 1 )
 | |
| *
 | |
|          IF( J.LT.M ) THEN
 | |
| *
 | |
| *           Compute WORK(2:M) = T(J, J) L((J+1):M, J)
 | |
| *            where A(J, J) = T(J, J) and A((J+1):M, J-1) = L((J+1):M, J)
 | |
| *
 | |
|             IF( K.GT.1 ) THEN
 | |
|                ALPHA = -A( J, K )
 | |
|                CALL ZAXPY( M-J, ALPHA, A( J+1, K-1 ), 1,
 | |
|      $                                 WORK( 2 ), 1 )
 | |
|             ENDIF
 | |
| *
 | |
| *           Find max(|WORK(2:M)|)
 | |
| *
 | |
|             I2 = IZAMAX( M-J, WORK( 2 ), 1 ) + 1
 | |
|             PIV = WORK( I2 )
 | |
| *
 | |
| *           Apply symmetric pivot
 | |
| *
 | |
|             IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
 | |
| *
 | |
| *              Swap WORK(I1) and WORK(I2)
 | |
| *
 | |
|                I1 = 2
 | |
|                WORK( I2 ) = WORK( I1 )
 | |
|                WORK( I1 ) = PIV
 | |
| *
 | |
| *              Swap A(I1+1:M, I1) with A(I2, I1+1:M)
 | |
| *
 | |
|                I1 = I1+J-1
 | |
|                I2 = I2+J-1
 | |
|                CALL ZSWAP( I2-I1-1, A( I1+1, J1+I1-1 ), 1,
 | |
|      $                              A( I2, J1+I1 ), LDA )
 | |
| *
 | |
| *              Swap A(I2+1:M, I1) with A(I2+1:M, I2)
 | |
| *
 | |
|                IF( I2.LT.M )
 | |
|      $            CALL ZSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
 | |
|      $                              A( I2+1, J1+I2-1 ), 1 )
 | |
| *
 | |
| *              Swap A(I1, I1) with A(I2, I2)
 | |
| *
 | |
|                PIV = A( I1, J1+I1-1 )
 | |
|                A( I1, J1+I1-1 ) = A( I2, J1+I2-1 )
 | |
|                A( I2, J1+I2-1 ) = PIV
 | |
| *
 | |
| *              Swap H(I1, I1:J1) with H(I2, I2:J1)
 | |
| *
 | |
|                CALL ZSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
 | |
|                IPIV( I1 ) = I2
 | |
| *
 | |
|                IF( I1.GT.(K1-1) ) THEN
 | |
| *
 | |
| *                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
 | |
| *                  skipping the first column
 | |
| *
 | |
|                   CALL ZSWAP( I1-K1+1, A( I1, 1 ), LDA,
 | |
|      $                                 A( I2, 1 ), LDA )
 | |
|                END IF
 | |
|             ELSE
 | |
|                IPIV( J+1 ) = J+1
 | |
|             ENDIF
 | |
| *
 | |
| *           Set A(J+1, J) = T(J+1, J)
 | |
| *
 | |
|             A( J+1, K ) = WORK( 2 )
 | |
| *
 | |
|             IF( J.LT.NB ) THEN
 | |
| *
 | |
| *              Copy A(J+1:M, J+1) into H(J+1:M, J),
 | |
| *
 | |
|                CALL ZCOPY( M-J, A( J+1, K+1 ), 1,
 | |
|      $                          H( J+1, J+1 ), 1 )
 | |
|             END IF
 | |
| *
 | |
| *           Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
 | |
| *            where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
 | |
| *
 | |
|             IF( J.LT.(M-1) ) THEN
 | |
|                IF( A( J+1, K ).NE.ZERO ) THEN
 | |
|                   ALPHA = ONE / A( J+1, K )
 | |
|                   CALL ZCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
 | |
|                   CALL ZSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
 | |
|                ELSE
 | |
|                   CALL ZLASET( 'Full', M-J-1, 1, ZERO, ZERO,
 | |
|      $                         A( J+2, K ), LDA )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|          J = J + 1
 | |
|          GO TO 30
 | |
|  40      CONTINUE
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLASYF_AA
 | |
| *
 | |
|       END
 |