380 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSYTRI
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSYTRI + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSYTRI computes the inverse of a real symmetric indefinite matrix
 | |
| *> A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 | |
| *> DSYTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are stored
 | |
| *>          as an upper or lower triangular matrix.
 | |
| *>          = 'U':  Upper triangular, form is A = U*D*U**T;
 | |
| *>          = 'L':  Lower triangular, form is A = L*D*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the block diagonal matrix D and the multipliers
 | |
| *>          used to obtain the factor U or L as computed by DSYTRF.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the (symmetric) inverse of the original
 | |
| *>          matrix.  If UPLO = 'U', the upper triangular part of the
 | |
| *>          inverse is formed and the part of A below the diagonal is not
 | |
| *>          referenced; if UPLO = 'L' the lower triangular part of the
 | |
| *>          inverse is formed and the part of A above the diagonal is
 | |
| *>          not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D
 | |
| *>          as determined by DSYTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 | |
| *>               inverse could not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleSYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            K, KP, KSTEP
 | |
|       DOUBLE PRECISION   AK, AKKP1, AKP1, D, T, TEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DDOT
 | |
|       EXTERNAL           LSAME, DDOT
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DSWAP, DSYMV, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSYTRI', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Check that the diagonal matrix D is nonsingular.
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Upper triangular storage: examine D from bottom to top
 | |
| *
 | |
|          DO 10 INFO = N, 1, -1
 | |
|             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
 | |
|      $         RETURN
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Lower triangular storage: examine D from top to bottom.
 | |
| *
 | |
|          DO 20 INFO = 1, N
 | |
|             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
 | |
|      $         RETURN
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Compute inv(A) from the factorization A = U*D*U**T.
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2, depending on the size of the diagonal blocks.
 | |
| *
 | |
|          K = 1
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        If K > N, exit from loop.
 | |
| *
 | |
|          IF( K.GT.N )
 | |
|      $      GO TO 40
 | |
| *
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *
 | |
| *           1 x 1 diagonal block
 | |
| *
 | |
| *           Invert the diagonal block.
 | |
| *
 | |
|             A( K, K ) = ONE / A( K, K )
 | |
| *
 | |
| *           Compute column K of the inverse.
 | |
| *
 | |
|             IF( K.GT.1 ) THEN
 | |
|                CALL DCOPY( K-1, A( 1, K ), 1, WORK, 1 )
 | |
|                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
 | |
|      $                     A( 1, K ), 1 )
 | |
|                A( K, K ) = A( K, K ) - DDOT( K-1, WORK, 1, A( 1, K ),
 | |
|      $                     1 )
 | |
|             END IF
 | |
|             KSTEP = 1
 | |
|          ELSE
 | |
| *
 | |
| *           2 x 2 diagonal block
 | |
| *
 | |
| *           Invert the diagonal block.
 | |
| *
 | |
|             T = ABS( A( K, K+1 ) )
 | |
|             AK = A( K, K ) / T
 | |
|             AKP1 = A( K+1, K+1 ) / T
 | |
|             AKKP1 = A( K, K+1 ) / T
 | |
|             D = T*( AK*AKP1-ONE )
 | |
|             A( K, K ) = AKP1 / D
 | |
|             A( K+1, K+1 ) = AK / D
 | |
|             A( K, K+1 ) = -AKKP1 / D
 | |
| *
 | |
| *           Compute columns K and K+1 of the inverse.
 | |
| *
 | |
|             IF( K.GT.1 ) THEN
 | |
|                CALL DCOPY( K-1, A( 1, K ), 1, WORK, 1 )
 | |
|                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
 | |
|      $                     A( 1, K ), 1 )
 | |
|                A( K, K ) = A( K, K ) - DDOT( K-1, WORK, 1, A( 1, K ),
 | |
|      $                     1 )
 | |
|                A( K, K+1 ) = A( K, K+1 ) -
 | |
|      $                       DDOT( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
 | |
|                CALL DCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
 | |
|                CALL DSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
 | |
|      $                     A( 1, K+1 ), 1 )
 | |
|                A( K+1, K+1 ) = A( K+1, K+1 ) -
 | |
|      $                         DDOT( K-1, WORK, 1, A( 1, K+1 ), 1 )
 | |
|             END IF
 | |
|             KSTEP = 2
 | |
|          END IF
 | |
| *
 | |
|          KP = ABS( IPIV( K ) )
 | |
|          IF( KP.NE.K ) THEN
 | |
| *
 | |
| *           Interchange rows and columns K and KP in the leading
 | |
| *           submatrix A(1:k+1,1:k+1)
 | |
| *
 | |
|             CALL DSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
 | |
|             CALL DSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
 | |
|             TEMP = A( K, K )
 | |
|             A( K, K ) = A( KP, KP )
 | |
|             A( KP, KP ) = TEMP
 | |
|             IF( KSTEP.EQ.2 ) THEN
 | |
|                TEMP = A( K, K+1 )
 | |
|                A( K, K+1 ) = A( KP, K+1 )
 | |
|                A( KP, K+1 ) = TEMP
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          K = K + KSTEP
 | |
|          GO TO 30
 | |
|    40    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute inv(A) from the factorization A = L*D*L**T.
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2, depending on the size of the diagonal blocks.
 | |
| *
 | |
|          K = N
 | |
|    50    CONTINUE
 | |
| *
 | |
| *        If K < 1, exit from loop.
 | |
| *
 | |
|          IF( K.LT.1 )
 | |
|      $      GO TO 60
 | |
| *
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *
 | |
| *           1 x 1 diagonal block
 | |
| *
 | |
| *           Invert the diagonal block.
 | |
| *
 | |
|             A( K, K ) = ONE / A( K, K )
 | |
| *
 | |
| *           Compute column K of the inverse.
 | |
| *
 | |
|             IF( K.LT.N ) THEN
 | |
|                CALL DCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
 | |
|                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
 | |
|      $                     ZERO, A( K+1, K ), 1 )
 | |
|                A( K, K ) = A( K, K ) - DDOT( N-K, WORK, 1, A( K+1, K ),
 | |
|      $                     1 )
 | |
|             END IF
 | |
|             KSTEP = 1
 | |
|          ELSE
 | |
| *
 | |
| *           2 x 2 diagonal block
 | |
| *
 | |
| *           Invert the diagonal block.
 | |
| *
 | |
|             T = ABS( A( K, K-1 ) )
 | |
|             AK = A( K-1, K-1 ) / T
 | |
|             AKP1 = A( K, K ) / T
 | |
|             AKKP1 = A( K, K-1 ) / T
 | |
|             D = T*( AK*AKP1-ONE )
 | |
|             A( K-1, K-1 ) = AKP1 / D
 | |
|             A( K, K ) = AK / D
 | |
|             A( K, K-1 ) = -AKKP1 / D
 | |
| *
 | |
| *           Compute columns K-1 and K of the inverse.
 | |
| *
 | |
|             IF( K.LT.N ) THEN
 | |
|                CALL DCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
 | |
|                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
 | |
|      $                     ZERO, A( K+1, K ), 1 )
 | |
|                A( K, K ) = A( K, K ) - DDOT( N-K, WORK, 1, A( K+1, K ),
 | |
|      $                     1 )
 | |
|                A( K, K-1 ) = A( K, K-1 ) -
 | |
|      $                       DDOT( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
 | |
|      $                       1 )
 | |
|                CALL DCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
 | |
|                CALL DSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
 | |
|      $                     ZERO, A( K+1, K-1 ), 1 )
 | |
|                A( K-1, K-1 ) = A( K-1, K-1 ) -
 | |
|      $                         DDOT( N-K, WORK, 1, A( K+1, K-1 ), 1 )
 | |
|             END IF
 | |
|             KSTEP = 2
 | |
|          END IF
 | |
| *
 | |
|          KP = ABS( IPIV( K ) )
 | |
|          IF( KP.NE.K ) THEN
 | |
| *
 | |
| *           Interchange rows and columns K and KP in the trailing
 | |
| *           submatrix A(k-1:n,k-1:n)
 | |
| *
 | |
|             IF( KP.LT.N )
 | |
|      $         CALL DSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
 | |
|             CALL DSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
 | |
|             TEMP = A( K, K )
 | |
|             A( K, K ) = A( KP, KP )
 | |
|             A( KP, KP ) = TEMP
 | |
|             IF( KSTEP.EQ.2 ) THEN
 | |
|                TEMP = A( K, K-1 )
 | |
|                A( K, K-1 ) = A( KP, K-1 )
 | |
|                A( KP, K-1 ) = TEMP
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          K = K - KSTEP
 | |
|          GO TO 50
 | |
|    60    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSYTRI
 | |
| *
 | |
|       END
 |