183 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAE2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlae2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlae2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlae2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAE2( A, B, C, RT1, RT2 )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       DOUBLE PRECISION   A, B, C, RT1, RT2
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLAE2  computes the eigenvalues of a 2-by-2 symmetric matrix
 | |
| *>    [  A   B  ]
 | |
| *>    [  B   C  ].
 | |
| *> On return, RT1 is the eigenvalue of larger absolute value, and RT2
 | |
| *> is the eigenvalue of smaller absolute value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION
 | |
| *>          The (1,1) element of the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION
 | |
| *>          The (1,2) and (2,1) elements of the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION
 | |
| *>          The (2,2) element of the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT1
 | |
| *> \verbatim
 | |
| *>          RT1 is DOUBLE PRECISION
 | |
| *>          The eigenvalue of larger absolute value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT2
 | |
| *> \verbatim
 | |
| *>          RT2 is DOUBLE PRECISION
 | |
| *>          The eigenvalue of smaller absolute value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  RT1 is accurate to a few ulps barring over/underflow.
 | |
| *>
 | |
| *>  RT2 may be inaccurate if there is massive cancellation in the
 | |
| *>  determinant A*C-B*B; higher precision or correctly rounded or
 | |
| *>  correctly truncated arithmetic would be needed to compute RT2
 | |
| *>  accurately in all cases.
 | |
| *>
 | |
| *>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
 | |
| *>  Underflow is harmless if the input data is 0 or exceeds
 | |
| *>     underflow_threshold / macheps.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAE2( A, B, C, RT1, RT2 )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   A, B, C, RT1, RT2
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D0 )
 | |
|       DOUBLE PRECISION   TWO
 | |
|       PARAMETER          ( TWO = 2.0D0 )
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D0 )
 | |
|       DOUBLE PRECISION   HALF
 | |
|       PARAMETER          ( HALF = 0.5D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   AB, ACMN, ACMX, ADF, DF, RT, SM, TB
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Compute the eigenvalues
 | |
| *
 | |
|       SM = A + C
 | |
|       DF = A - C
 | |
|       ADF = ABS( DF )
 | |
|       TB = B + B
 | |
|       AB = ABS( TB )
 | |
|       IF( ABS( A ).GT.ABS( C ) ) THEN
 | |
|          ACMX = A
 | |
|          ACMN = C
 | |
|       ELSE
 | |
|          ACMX = C
 | |
|          ACMN = A
 | |
|       END IF
 | |
|       IF( ADF.GT.AB ) THEN
 | |
|          RT = ADF*SQRT( ONE+( AB / ADF )**2 )
 | |
|       ELSE IF( ADF.LT.AB ) THEN
 | |
|          RT = AB*SQRT( ONE+( ADF / AB )**2 )
 | |
|       ELSE
 | |
| *
 | |
| *        Includes case AB=ADF=0
 | |
| *
 | |
|          RT = AB*SQRT( TWO )
 | |
|       END IF
 | |
|       IF( SM.LT.ZERO ) THEN
 | |
|          RT1 = HALF*( SM-RT )
 | |
| *
 | |
| *        Order of execution important.
 | |
| *        To get fully accurate smaller eigenvalue,
 | |
| *        next line needs to be executed in higher precision.
 | |
| *
 | |
|          RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
 | |
|       ELSE IF( SM.GT.ZERO ) THEN
 | |
|          RT1 = HALF*( SM+RT )
 | |
| *
 | |
| *        Order of execution important.
 | |
| *        To get fully accurate smaller eigenvalue,
 | |
| *        next line needs to be executed in higher precision.
 | |
| *
 | |
|          RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
 | |
|       ELSE
 | |
| *
 | |
| *        Includes case RT1 = RT2 = 0
 | |
| *
 | |
|          RT1 = HALF*RT
 | |
|          RT2 = -HALF*RT
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAE2
 | |
| *
 | |
|       END
 |