235 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGTTRF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGTTRF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgttrf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgttrf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgttrf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   D( * ), DL( * ), DU( * ), DU2( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGTTRF computes an LU factorization of a real tridiagonal matrix A
 | |
| *> using elimination with partial pivoting and row interchanges.
 | |
| *>
 | |
| *> The factorization has the form
 | |
| *>    A = L * U
 | |
| *> where L is a product of permutation and unit lower bidiagonal
 | |
| *> matrices and U is upper triangular with nonzeros in only the main
 | |
| *> diagonal and first two superdiagonals.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DL
 | |
| *> \verbatim
 | |
| *>          DL is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          On entry, DL must contain the (n-1) sub-diagonal elements of
 | |
| *>          A.
 | |
| *>
 | |
| *>          On exit, DL is overwritten by the (n-1) multipliers that
 | |
| *>          define the matrix L from the LU factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, D must contain the diagonal elements of A.
 | |
| *>
 | |
| *>          On exit, D is overwritten by the n diagonal elements of the
 | |
| *>          upper triangular matrix U from the LU factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DU
 | |
| *> \verbatim
 | |
| *>          DU is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          On entry, DU must contain the (n-1) super-diagonal elements
 | |
| *>          of A.
 | |
| *>
 | |
| *>          On exit, DU is overwritten by the (n-1) elements of the first
 | |
| *>          super-diagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DU2
 | |
| *> \verbatim
 | |
| *>          DU2 is DOUBLE PRECISION array, dimension (N-2)
 | |
| *>          On exit, DU2 is overwritten by the (n-2) elements of the
 | |
| *>          second super-diagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | |
| *>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | |
| *>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | |
| *>          required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -k, the k-th argument had an illegal value
 | |
| *>          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization
 | |
| *>                has been completed, but the factor U is exactly
 | |
| *>                singular, and division by zero will occur if it is used
 | |
| *>                to solve a system of equations.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGTcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   D( * ), DL( * ), DU( * ), DU2( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       DOUBLE PRECISION   FACT, TEMP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|          CALL XERBLA( 'DGTTRF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Initialize IPIV(i) = i and DU2(I) = 0
 | |
| *
 | |
|       DO 10 I = 1, N
 | |
|          IPIV( I ) = I
 | |
|    10 CONTINUE
 | |
|       DO 20 I = 1, N - 2
 | |
|          DU2( I ) = ZERO
 | |
|    20 CONTINUE
 | |
| *
 | |
|       DO 30 I = 1, N - 2
 | |
|          IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | |
| *
 | |
| *           No row interchange required, eliminate DL(I)
 | |
| *
 | |
|             IF( D( I ).NE.ZERO ) THEN
 | |
|                FACT = DL( I ) / D( I )
 | |
|                DL( I ) = FACT
 | |
|                D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           Interchange rows I and I+1, eliminate DL(I)
 | |
| *
 | |
|             FACT = D( I ) / DL( I )
 | |
|             D( I ) = DL( I )
 | |
|             DL( I ) = FACT
 | |
|             TEMP = DU( I )
 | |
|             DU( I ) = D( I+1 )
 | |
|             D( I+1 ) = TEMP - FACT*D( I+1 )
 | |
|             DU2( I ) = DU( I+1 )
 | |
|             DU( I+1 ) = -FACT*DU( I+1 )
 | |
|             IPIV( I ) = I + 1
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
|       IF( N.GT.1 ) THEN
 | |
|          I = N - 1
 | |
|          IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | |
|             IF( D( I ).NE.ZERO ) THEN
 | |
|                FACT = DL( I ) / D( I )
 | |
|                DL( I ) = FACT
 | |
|                D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | |
|             END IF
 | |
|          ELSE
 | |
|             FACT = D( I ) / DL( I )
 | |
|             D( I ) = DL( I )
 | |
|             DL( I ) = FACT
 | |
|             TEMP = DU( I )
 | |
|             DU( I ) = D( I+1 )
 | |
|             D( I+1 ) = TEMP - FACT*D( I+1 )
 | |
|             IPIV( I ) = I + 1
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Check for a zero on the diagonal of U.
 | |
| *
 | |
|       DO 40 I = 1, N
 | |
|          IF( D( I ).EQ.ZERO ) THEN
 | |
|             INFO = I
 | |
|             GO TO 50
 | |
|          END IF
 | |
|    40 CONTINUE
 | |
|    50 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGTTRF
 | |
| *
 | |
|       END
 |