295 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			295 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE SSYMMF ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
 | 
						|
     $                   BETA, C, LDC )
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER*1        SIDE, UPLO
 | 
						|
      INTEGER            M, N, LDA, LDB, LDC
 | 
						|
      REAL               ALPHA, BETA
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), B( LDB, * ), C( LDC, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  SSYMM  performs one of the matrix-matrix operations
 | 
						|
*
 | 
						|
*     C := alpha*A*B + beta*C,
 | 
						|
*
 | 
						|
*  or
 | 
						|
*
 | 
						|
*     C := alpha*B*A + beta*C,
 | 
						|
*
 | 
						|
*  where alpha and beta are scalars,  A is a symmetric matrix and  B and
 | 
						|
*  C are  m by n matrices.
 | 
						|
*
 | 
						|
*  Parameters
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*  SIDE   - CHARACTER*1.
 | 
						|
*           On entry,  SIDE  specifies whether  the  symmetric matrix  A
 | 
						|
*           appears on the  left or right  in the  operation as follows:
 | 
						|
*
 | 
						|
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
 | 
						|
*
 | 
						|
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  UPLO   - CHARACTER*1.
 | 
						|
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | 
						|
*           triangular  part  of  the  symmetric  matrix   A  is  to  be
 | 
						|
*           referenced as follows:
 | 
						|
*
 | 
						|
*              UPLO = 'U' or 'u'   Only the upper triangular part of the
 | 
						|
*                                  symmetric matrix is to be referenced.
 | 
						|
*
 | 
						|
*              UPLO = 'L' or 'l'   Only the lower triangular part of the
 | 
						|
*                                  symmetric matrix is to be referenced.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  M      - INTEGER.
 | 
						|
*           On entry,  M  specifies the number of rows of the matrix  C.
 | 
						|
*           M  must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  N      - INTEGER.
 | 
						|
*           On entry, N specifies the number of columns of the matrix C.
 | 
						|
*           N  must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  ALPHA  - REAL            .
 | 
						|
*           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
 | 
						|
*           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
 | 
						|
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
 | 
						|
*           the array  A  must contain the  symmetric matrix,  such that
 | 
						|
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular
 | 
						|
*           part of the array  A  must contain the upper triangular part
 | 
						|
*           of the  symmetric matrix and the  strictly  lower triangular
 | 
						|
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 | 
						|
*           the leading  m by m  lower triangular part  of the  array  A
 | 
						|
*           must  contain  the  lower triangular part  of the  symmetric
 | 
						|
*           matrix and the  strictly upper triangular part of  A  is not
 | 
						|
*           referenced.
 | 
						|
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
 | 
						|
*           the array  A  must contain the  symmetric matrix,  such that
 | 
						|
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular
 | 
						|
*           part of the array  A  must contain the upper triangular part
 | 
						|
*           of the  symmetric matrix and the  strictly  lower triangular
 | 
						|
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 | 
						|
*           the leading  n by n  lower triangular part  of the  array  A
 | 
						|
*           must  contain  the  lower triangular part  of the  symmetric
 | 
						|
*           matrix and the  strictly upper triangular part of  A  is not
 | 
						|
*           referenced.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  LDA    - INTEGER.
 | 
						|
*           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
 | 
						|
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 | 
						|
*           least  max( 1, n ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  B      - REAL             array of DIMENSION ( LDB, n ).
 | 
						|
*           Before entry, the leading  m by n part of the array  B  must
 | 
						|
*           contain the matrix B.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  LDB    - INTEGER.
 | 
						|
*           On entry, LDB specifies the first dimension of B as declared
 | 
						|
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | 
						|
*           max( 1, m ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  BETA   - REAL            .
 | 
						|
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
 | 
						|
*           supplied as zero then C need not be set on input.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  C      - REAL             array of DIMENSION ( LDC, n ).
 | 
						|
*           Before entry, the leading  m by n  part of the array  C must
 | 
						|
*           contain the matrix  C,  except when  beta  is zero, in which
 | 
						|
*           case C need not be set on entry.
 | 
						|
*           On exit, the array  C  is overwritten by the  m by n updated
 | 
						|
*           matrix.
 | 
						|
*
 | 
						|
*  LDC    - INTEGER.
 | 
						|
*           On entry, LDC specifies the first dimension of C as declared
 | 
						|
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | 
						|
*           max( 1, m ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*
 | 
						|
*  Level 3 Blas routine.
 | 
						|
*
 | 
						|
*  -- Written on 8-February-1989.
 | 
						|
*     Jack Dongarra, Argonne National Laboratory.
 | 
						|
*     Iain Duff, AERE Harwell.
 | 
						|
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | 
						|
*     Sven Hammarling, Numerical Algorithms Group Ltd.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I, INFO, J, K, NROWA
 | 
						|
      REAL               TEMP1, TEMP2
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE         , ZERO
 | 
						|
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Set NROWA as the number of rows of A.
 | 
						|
*
 | 
						|
      IF( LSAME( SIDE, 'L' ) )THEN
 | 
						|
         NROWA = M
 | 
						|
      ELSE
 | 
						|
         NROWA = N
 | 
						|
      END IF
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF(      ( .NOT.LSAME( SIDE, 'L' ) ).AND.
 | 
						|
     $         ( .NOT.LSAME( SIDE, 'R' ) )      )THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( ( .NOT.UPPER              ).AND.
 | 
						|
     $         ( .NOT.LSAME( UPLO, 'L' ) )      )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( M  .LT.0               )THEN
 | 
						|
         INFO = 3
 | 
						|
      ELSE IF( N  .LT.0               )THEN
 | 
						|
         INFO = 4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
 | 
						|
         INFO = 7
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
 | 
						|
         INFO = 9
 | 
						|
      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
 | 
						|
         INFO = 12
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'SSYMM ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
 | 
						|
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     And when  alpha.eq.zero.
 | 
						|
*
 | 
						|
      IF( ALPHA.EQ.ZERO )THEN
 | 
						|
         IF( BETA.EQ.ZERO )THEN
 | 
						|
            DO 20, J = 1, N
 | 
						|
               DO 10, I = 1, M
 | 
						|
                  C( I, J ) = ZERO
 | 
						|
   10          CONTINUE
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 40, J = 1, N
 | 
						|
               DO 30, I = 1, M
 | 
						|
                  C( I, J ) = BETA*C( I, J )
 | 
						|
   30          CONTINUE
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations.
 | 
						|
*
 | 
						|
      IF( LSAME( SIDE, 'L' ) )THEN
 | 
						|
*
 | 
						|
*        Form  C := alpha*A*B + beta*C.
 | 
						|
*
 | 
						|
         IF( UPPER )THEN
 | 
						|
            DO 70, J = 1, N
 | 
						|
               DO 60, I = 1, M
 | 
						|
                  TEMP1 = ALPHA*B( I, J )
 | 
						|
                  TEMP2 = ZERO
 | 
						|
                  DO 50, K = 1, I - 1
 | 
						|
                     C( K, J ) = C( K, J ) + TEMP1    *A( K, I )
 | 
						|
                     TEMP2     = TEMP2     + B( K, J )*A( K, I )
 | 
						|
   50             CONTINUE
 | 
						|
                  IF( BETA.EQ.ZERO )THEN
 | 
						|
                     C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
 | 
						|
                  ELSE
 | 
						|
                     C( I, J ) = BETA *C( I, J ) +
 | 
						|
     $                           TEMP1*A( I, I ) + ALPHA*TEMP2
 | 
						|
                  END IF
 | 
						|
   60          CONTINUE
 | 
						|
   70       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 100, J = 1, N
 | 
						|
               DO 90, I = M, 1, -1
 | 
						|
                  TEMP1 = ALPHA*B( I, J )
 | 
						|
                  TEMP2 = ZERO
 | 
						|
                  DO 80, K = I + 1, M
 | 
						|
                     C( K, J ) = C( K, J ) + TEMP1    *A( K, I )
 | 
						|
                     TEMP2     = TEMP2     + B( K, J )*A( K, I )
 | 
						|
   80             CONTINUE
 | 
						|
                  IF( BETA.EQ.ZERO )THEN
 | 
						|
                     C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
 | 
						|
                  ELSE
 | 
						|
                     C( I, J ) = BETA *C( I, J ) +
 | 
						|
     $                           TEMP1*A( I, I ) + ALPHA*TEMP2
 | 
						|
                  END IF
 | 
						|
   90          CONTINUE
 | 
						|
  100       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  C := alpha*B*A + beta*C.
 | 
						|
*
 | 
						|
         DO 170, J = 1, N
 | 
						|
            TEMP1 = ALPHA*A( J, J )
 | 
						|
            IF( BETA.EQ.ZERO )THEN
 | 
						|
               DO 110, I = 1, M
 | 
						|
                  C( I, J ) = TEMP1*B( I, J )
 | 
						|
  110          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 120, I = 1, M
 | 
						|
                  C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
 | 
						|
  120          CONTINUE
 | 
						|
            END IF
 | 
						|
            DO 140, K = 1, J - 1
 | 
						|
               IF( UPPER )THEN
 | 
						|
                  TEMP1 = ALPHA*A( K, J )
 | 
						|
               ELSE
 | 
						|
                  TEMP1 = ALPHA*A( J, K )
 | 
						|
               END IF
 | 
						|
               DO 130, I = 1, M
 | 
						|
                  C( I, J ) = C( I, J ) + TEMP1*B( I, K )
 | 
						|
  130          CONTINUE
 | 
						|
  140       CONTINUE
 | 
						|
            DO 160, K = J + 1, N
 | 
						|
               IF( UPPER )THEN
 | 
						|
                  TEMP1 = ALPHA*A( J, K )
 | 
						|
               ELSE
 | 
						|
                  TEMP1 = ALPHA*A( K, J )
 | 
						|
               END IF
 | 
						|
               DO 150, I = 1, M
 | 
						|
                  C( I, J ) = C( I, J ) + TEMP1*B( I, K )
 | 
						|
  150          CONTINUE
 | 
						|
  160       CONTINUE
 | 
						|
  170    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSYMM .
 | 
						|
*
 | 
						|
      END
 |