450 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			450 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLATM4
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
 | 
						|
*                          TRIANG, IDIST, ISEED, A, LDA )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
 | 
						|
*       DOUBLE PRECISION   AMAGN, RCOND, TRIANG
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISEED( 4 )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLATM4 generates basic square matrices, which may later be
 | 
						|
*> multiplied by others in order to produce test matrices.  It is
 | 
						|
*> intended mainly to be used to test the generalized eigenvalue
 | 
						|
*> routines.
 | 
						|
*>
 | 
						|
*> It first generates the diagonal and (possibly) subdiagonal,
 | 
						|
*> according to the value of ITYPE, NZ1, NZ2, ISIGN, AMAGN, and RCOND.
 | 
						|
*> It then fills in the upper triangle with random numbers, if TRIANG is
 | 
						|
*> non-zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          The "type" of matrix on the diagonal and sub-diagonal.
 | 
						|
*>          If ITYPE < 0, then type abs(ITYPE) is generated and then
 | 
						|
*>             swapped end for end (A(I,J) := A'(N-J,N-I).)  See also
 | 
						|
*>             the description of AMAGN and ISIGN.
 | 
						|
*>
 | 
						|
*>          Special types:
 | 
						|
*>          = 0:  the zero matrix.
 | 
						|
*>          = 1:  the identity.
 | 
						|
*>          = 2:  a transposed Jordan block.
 | 
						|
*>          = 3:  If N is odd, then a k+1 x k+1 transposed Jordan block
 | 
						|
*>                followed by a k x k identity block, where k=(N-1)/2.
 | 
						|
*>                If N is even, then k=(N-2)/2, and a zero diagonal entry
 | 
						|
*>                is tacked onto the end.
 | 
						|
*>
 | 
						|
*>          Diagonal types.  The diagonal consists of NZ1 zeros, then
 | 
						|
*>             k=N-NZ1-NZ2 nonzeros.  The subdiagonal is zero.  ITYPE
 | 
						|
*>             specifies the nonzero diagonal entries as follows:
 | 
						|
*>          = 4:  1, ..., k
 | 
						|
*>          = 5:  1, RCOND, ..., RCOND
 | 
						|
*>          = 6:  1, ..., 1, RCOND
 | 
						|
*>          = 7:  1, a, a^2, ..., a^(k-1)=RCOND
 | 
						|
*>          = 8:  1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
 | 
						|
*>          = 9:  random numbers chosen from (RCOND,1)
 | 
						|
*>          = 10: random numbers with distribution IDIST (see DLARND.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NZ1
 | 
						|
*> \verbatim
 | 
						|
*>          NZ1 is INTEGER
 | 
						|
*>          If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
 | 
						|
*>          be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NZ2
 | 
						|
*> \verbatim
 | 
						|
*>          NZ2 is INTEGER
 | 
						|
*>          If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
 | 
						|
*>          be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ISIGN
 | 
						|
*> \verbatim
 | 
						|
*>          ISIGN is INTEGER
 | 
						|
*>          = 0: The sign of the diagonal and subdiagonal entries will
 | 
						|
*>               be left unchanged.
 | 
						|
*>          = 1: The diagonal and subdiagonal entries will have their
 | 
						|
*>               sign changed at random.
 | 
						|
*>          = 2: If ITYPE is 2 or 3, then the same as ISIGN=1.
 | 
						|
*>               Otherwise, with probability 0.5, odd-even pairs of
 | 
						|
*>               diagonal entries A(2*j-1,2*j-1), A(2*j,2*j) will be
 | 
						|
*>               converted to a 2x2 block by pre- and post-multiplying
 | 
						|
*>               by distinct random orthogonal rotations.  The remaining
 | 
						|
*>               diagonal entries will have their sign changed at random.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AMAGN
 | 
						|
*> \verbatim
 | 
						|
*>          AMAGN is DOUBLE PRECISION
 | 
						|
*>          The diagonal and subdiagonal entries will be multiplied by
 | 
						|
*>          AMAGN.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          If abs(ITYPE) > 4, then the smallest diagonal entry will be
 | 
						|
*>          entry will be RCOND.  RCOND must be between 0 and 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRIANG
 | 
						|
*> \verbatim
 | 
						|
*>          TRIANG is DOUBLE PRECISION
 | 
						|
*>          The entries above the diagonal will be random numbers with
 | 
						|
*>          magnitude bounded by TRIANG (i.e., random numbers multiplied
 | 
						|
*>          by TRIANG.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IDIST
 | 
						|
*> \verbatim
 | 
						|
*>          IDIST is INTEGER
 | 
						|
*>          Specifies the type of distribution to be used to generate a
 | 
						|
*>          random matrix.
 | 
						|
*>          = 1:  UNIFORM( 0, 1 )
 | 
						|
*>          = 2:  UNIFORM( -1, 1 )
 | 
						|
*>          = 3:  NORMAL ( 0, 1 )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry ISEED specifies the seed of the random number
 | 
						|
*>          generator.  The values of ISEED are changed on exit, and can
 | 
						|
*>          be used in the next call to DLATM4 to continue the same
 | 
						|
*>          random number sequence.
 | 
						|
*>          Note: ISEED(4) should be odd, for the random number generator
 | 
						|
*>          used at present.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
 | 
						|
*>          Array to be computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          Leading dimension of A.  Must be at least 1 and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
 | 
						|
     $                   TRIANG, IDIST, ISEED, A, LDA )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
 | 
						|
      DOUBLE PRECISION   AMAGN, RCOND, TRIANG
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
      DOUBLE PRECISION   A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
 | 
						|
      DOUBLE PRECISION   HALF
 | 
						|
      PARAMETER          ( HALF = ONE / TWO )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IOFF, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND,
 | 
						|
     $                   KLEN
 | 
						|
      DOUBLE PRECISION   ALPHA, CL, CR, SAFMIN, SL, SR, SV1, SV2, TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLARAN, DLARND
 | 
						|
      EXTERNAL           DLAMCH, DLARAN, DLARND
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLASET
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, EXP, LOG, MAX, MIN, MOD, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
      CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
 | 
						|
*
 | 
						|
*     Insure a correct ISEED
 | 
						|
*
 | 
						|
      IF( MOD( ISEED( 4 ), 2 ).NE.1 )
 | 
						|
     $   ISEED( 4 ) = ISEED( 4 ) + 1
 | 
						|
*
 | 
						|
*     Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2,
 | 
						|
*     and RCOND
 | 
						|
*
 | 
						|
      IF( ITYPE.NE.0 ) THEN
 | 
						|
         IF( ABS( ITYPE ).GE.4 ) THEN
 | 
						|
            KBEG = MAX( 1, MIN( N, NZ1+1 ) )
 | 
						|
            KEND = MAX( KBEG, MIN( N, N-NZ2 ) )
 | 
						|
            KLEN = KEND + 1 - KBEG
 | 
						|
         ELSE
 | 
						|
            KBEG = 1
 | 
						|
            KEND = N
 | 
						|
            KLEN = N
 | 
						|
         END IF
 | 
						|
         ISDB = 1
 | 
						|
         ISDE = 0
 | 
						|
         GO TO ( 10, 30, 50, 80, 100, 120, 140, 160,
 | 
						|
     $           180, 200 )ABS( ITYPE )
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 1: Identity
 | 
						|
*
 | 
						|
   10    CONTINUE
 | 
						|
         DO 20 JD = 1, N
 | 
						|
            A( JD, JD ) = ONE
 | 
						|
   20    CONTINUE
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 2: Transposed Jordan block
 | 
						|
*
 | 
						|
   30    CONTINUE
 | 
						|
         DO 40 JD = 1, N - 1
 | 
						|
            A( JD+1, JD ) = ONE
 | 
						|
   40    CONTINUE
 | 
						|
         ISDB = 1
 | 
						|
         ISDE = N - 1
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 3: Transposed Jordan block, followed by the
 | 
						|
*                        identity.
 | 
						|
*
 | 
						|
   50    CONTINUE
 | 
						|
         K = ( N-1 ) / 2
 | 
						|
         DO 60 JD = 1, K
 | 
						|
            A( JD+1, JD ) = ONE
 | 
						|
   60    CONTINUE
 | 
						|
         ISDB = 1
 | 
						|
         ISDE = K
 | 
						|
         DO 70 JD = K + 2, 2*K + 1
 | 
						|
            A( JD, JD ) = ONE
 | 
						|
   70    CONTINUE
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 4: 1,...,k
 | 
						|
*
 | 
						|
   80    CONTINUE
 | 
						|
         DO 90 JD = KBEG, KEND
 | 
						|
            A( JD, JD ) = DBLE( JD-NZ1 )
 | 
						|
   90    CONTINUE
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 5: One large D value:
 | 
						|
*
 | 
						|
  100    CONTINUE
 | 
						|
         DO 110 JD = KBEG + 1, KEND
 | 
						|
            A( JD, JD ) = RCOND
 | 
						|
  110    CONTINUE
 | 
						|
         A( KBEG, KBEG ) = ONE
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 6: One small D value:
 | 
						|
*
 | 
						|
  120    CONTINUE
 | 
						|
         DO 130 JD = KBEG, KEND - 1
 | 
						|
            A( JD, JD ) = ONE
 | 
						|
  130    CONTINUE
 | 
						|
         A( KEND, KEND ) = RCOND
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 7: Exponentially distributed D values:
 | 
						|
*
 | 
						|
  140    CONTINUE
 | 
						|
         A( KBEG, KBEG ) = ONE
 | 
						|
         IF( KLEN.GT.1 ) THEN
 | 
						|
            ALPHA = RCOND**( ONE / DBLE( KLEN-1 ) )
 | 
						|
            DO 150 I = 2, KLEN
 | 
						|
               A( NZ1+I, NZ1+I ) = ALPHA**DBLE( I-1 )
 | 
						|
  150       CONTINUE
 | 
						|
         END IF
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 8: Arithmetically distributed D values:
 | 
						|
*
 | 
						|
  160    CONTINUE
 | 
						|
         A( KBEG, KBEG ) = ONE
 | 
						|
         IF( KLEN.GT.1 ) THEN
 | 
						|
            ALPHA = ( ONE-RCOND ) / DBLE( KLEN-1 )
 | 
						|
            DO 170 I = 2, KLEN
 | 
						|
               A( NZ1+I, NZ1+I ) = DBLE( KLEN-I )*ALPHA + RCOND
 | 
						|
  170       CONTINUE
 | 
						|
         END IF
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1):
 | 
						|
*
 | 
						|
  180    CONTINUE
 | 
						|
         ALPHA = LOG( RCOND )
 | 
						|
         DO 190 JD = KBEG, KEND
 | 
						|
            A( JD, JD ) = EXP( ALPHA*DLARAN( ISEED ) )
 | 
						|
  190    CONTINUE
 | 
						|
         GO TO 220
 | 
						|
*
 | 
						|
*        abs(ITYPE) = 10: Randomly distributed D values from DIST
 | 
						|
*
 | 
						|
  200    CONTINUE
 | 
						|
         DO 210 JD = KBEG, KEND
 | 
						|
            A( JD, JD ) = DLARND( IDIST, ISEED )
 | 
						|
  210    CONTINUE
 | 
						|
*
 | 
						|
  220    CONTINUE
 | 
						|
*
 | 
						|
*        Scale by AMAGN
 | 
						|
*
 | 
						|
         DO 230 JD = KBEG, KEND
 | 
						|
            A( JD, JD ) = AMAGN*DBLE( A( JD, JD ) )
 | 
						|
  230    CONTINUE
 | 
						|
         DO 240 JD = ISDB, ISDE
 | 
						|
            A( JD+1, JD ) = AMAGN*DBLE( A( JD+1, JD ) )
 | 
						|
  240    CONTINUE
 | 
						|
*
 | 
						|
*        If ISIGN = 1 or 2, assign random signs to diagonal and
 | 
						|
*        subdiagonal
 | 
						|
*
 | 
						|
         IF( ISIGN.GT.0 ) THEN
 | 
						|
            DO 250 JD = KBEG, KEND
 | 
						|
               IF( DBLE( A( JD, JD ) ).NE.ZERO ) THEN
 | 
						|
                  IF( DLARAN( ISEED ).GT.HALF )
 | 
						|
     $               A( JD, JD ) = -A( JD, JD )
 | 
						|
               END IF
 | 
						|
  250       CONTINUE
 | 
						|
            DO 260 JD = ISDB, ISDE
 | 
						|
               IF( DBLE( A( JD+1, JD ) ).NE.ZERO ) THEN
 | 
						|
                  IF( DLARAN( ISEED ).GT.HALF )
 | 
						|
     $               A( JD+1, JD ) = -A( JD+1, JD )
 | 
						|
               END IF
 | 
						|
  260       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Reverse if ITYPE < 0
 | 
						|
*
 | 
						|
         IF( ITYPE.LT.0 ) THEN
 | 
						|
            DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2
 | 
						|
               TEMP = A( JD, JD )
 | 
						|
               A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD )
 | 
						|
               A( KBEG+KEND-JD, KBEG+KEND-JD ) = TEMP
 | 
						|
  270       CONTINUE
 | 
						|
            DO 280 JD = 1, ( N-1 ) / 2
 | 
						|
               TEMP = A( JD+1, JD )
 | 
						|
               A( JD+1, JD ) = A( N+1-JD, N-JD )
 | 
						|
               A( N+1-JD, N-JD ) = TEMP
 | 
						|
  280       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        If ISIGN = 2, and no subdiagonals already, then apply
 | 
						|
*        random rotations to make 2x2 blocks.
 | 
						|
*
 | 
						|
         IF( ISIGN.EQ.2 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 ) THEN
 | 
						|
            SAFMIN = DLAMCH( 'S' )
 | 
						|
            DO 290 JD = KBEG, KEND - 1, 2
 | 
						|
               IF( DLARAN( ISEED ).GT.HALF ) THEN
 | 
						|
*
 | 
						|
*                 Rotation on left.
 | 
						|
*
 | 
						|
                  CL = TWO*DLARAN( ISEED ) - ONE
 | 
						|
                  SL = TWO*DLARAN( ISEED ) - ONE
 | 
						|
                  TEMP = ONE / MAX( SAFMIN, SQRT( CL**2+SL**2 ) )
 | 
						|
                  CL = CL*TEMP
 | 
						|
                  SL = SL*TEMP
 | 
						|
*
 | 
						|
*                 Rotation on right.
 | 
						|
*
 | 
						|
                  CR = TWO*DLARAN( ISEED ) - ONE
 | 
						|
                  SR = TWO*DLARAN( ISEED ) - ONE
 | 
						|
                  TEMP = ONE / MAX( SAFMIN, SQRT( CR**2+SR**2 ) )
 | 
						|
                  CR = CR*TEMP
 | 
						|
                  SR = SR*TEMP
 | 
						|
*
 | 
						|
*                 Apply
 | 
						|
*
 | 
						|
                  SV1 = A( JD, JD )
 | 
						|
                  SV2 = A( JD+1, JD+1 )
 | 
						|
                  A( JD, JD ) = CL*CR*SV1 + SL*SR*SV2
 | 
						|
                  A( JD+1, JD ) = -SL*CR*SV1 + CL*SR*SV2
 | 
						|
                  A( JD, JD+1 ) = -CL*SR*SV1 + SL*CR*SV2
 | 
						|
                  A( JD+1, JD+1 ) = SL*SR*SV1 + CL*CR*SV2
 | 
						|
               END IF
 | 
						|
  290       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Fill in upper triangle (except for 2x2 blocks)
 | 
						|
*
 | 
						|
      IF( TRIANG.NE.ZERO ) THEN
 | 
						|
         IF( ISIGN.NE.2 .OR. ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
 | 
						|
            IOFF = 1
 | 
						|
         ELSE
 | 
						|
            IOFF = 2
 | 
						|
            DO 300 JR = 1, N - 1
 | 
						|
               IF( A( JR+1, JR ).EQ.ZERO )
 | 
						|
     $            A( JR, JR+1 ) = TRIANG*DLARND( IDIST, ISEED )
 | 
						|
  300       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 320 JC = 2, N
 | 
						|
            DO 310 JR = 1, JC - IOFF
 | 
						|
               A( JR, JC ) = TRIANG*DLARND( IDIST, ISEED )
 | 
						|
  310       CONTINUE
 | 
						|
  320    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLATM4
 | 
						|
*
 | 
						|
      END
 |