1103 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1103 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DCHKBD
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
 | 
						|
*                          ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
 | 
						|
*                          Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
 | 
						|
*                          IWORK, NOUT, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
 | 
						|
*      $                   NSIZES, NTYPES
 | 
						|
*       DOUBLE PRECISION   THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
 | 
						|
*      $                   Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
 | 
						|
*      $                   VT( LDPT, * ), WORK( * ), X( LDX, * ),
 | 
						|
*      $                   Y( LDX, * ), Z( LDX, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DCHKBD checks the singular value decomposition (SVD) routines.
 | 
						|
*>
 | 
						|
*> DGEBRD reduces a real general m by n matrix A to upper or lower
 | 
						|
*> bidiagonal form B by an orthogonal transformation:  Q' * A * P = B
 | 
						|
*> (or A = Q * B * P').  The matrix B is upper bidiagonal if m >= n
 | 
						|
*> and lower bidiagonal if m < n.
 | 
						|
*>
 | 
						|
*> DORGBR generates the orthogonal matrices Q and P' from DGEBRD.
 | 
						|
*> Note that Q and P are not necessarily square.
 | 
						|
*>
 | 
						|
*> DBDSQR computes the singular value decomposition of the bidiagonal
 | 
						|
*> matrix B as B = U S V'.  It is called three times to compute
 | 
						|
*>    1)  B = U S1 V', where S1 is the diagonal matrix of singular
 | 
						|
*>        values and the columns of the matrices U and V are the left
 | 
						|
*>        and right singular vectors, respectively, of B.
 | 
						|
*>    2)  Same as 1), but the singular values are stored in S2 and the
 | 
						|
*>        singular vectors are not computed.
 | 
						|
*>    3)  A = (UQ) S (P'V'), the SVD of the original matrix A.
 | 
						|
*> In addition, DBDSQR has an option to apply the left orthogonal matrix
 | 
						|
*> U to a matrix X, useful in least squares applications.
 | 
						|
*>
 | 
						|
*> DBDSDC computes the singular value decomposition of the bidiagonal
 | 
						|
*> matrix B as B = U S V' using divide-and-conquer. It is called twice
 | 
						|
*> to compute
 | 
						|
*>    1) B = U S1 V', where S1 is the diagonal matrix of singular
 | 
						|
*>        values and the columns of the matrices U and V are the left
 | 
						|
*>        and right singular vectors, respectively, of B.
 | 
						|
*>    2) Same as 1), but the singular values are stored in S2 and the
 | 
						|
*>        singular vectors are not computed.
 | 
						|
*>
 | 
						|
*> For each pair of matrix dimensions (M,N) and each selected matrix
 | 
						|
*> type, an M by N matrix A and an M by NRHS matrix X are generated.
 | 
						|
*> The problem dimensions are as follows
 | 
						|
*>    A:          M x N
 | 
						|
*>    Q:          M x min(M,N) (but M x M if NRHS > 0)
 | 
						|
*>    P:          min(M,N) x N
 | 
						|
*>    B:          min(M,N) x min(M,N)
 | 
						|
*>    U, V:       min(M,N) x min(M,N)
 | 
						|
*>    S1, S2      diagonal, order min(M,N)
 | 
						|
*>    X:          M x NRHS
 | 
						|
*>
 | 
						|
*> For each generated matrix, 14 tests are performed:
 | 
						|
*>
 | 
						|
*> Test DGEBRD and DORGBR
 | 
						|
*>
 | 
						|
*> (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
 | 
						|
*>
 | 
						|
*> (2)   | I - Q' Q | / ( M ulp )
 | 
						|
*>
 | 
						|
*> (3)   | I - PT PT' | / ( N ulp )
 | 
						|
*>
 | 
						|
*> Test DBDSQR on bidiagonal matrix B
 | 
						|
*>
 | 
						|
*> (4)   | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
 | 
						|
*>
 | 
						|
*> (5)   | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X
 | 
						|
*>                                                  and   Z = U' Y.
 | 
						|
*> (6)   | I - U' U | / ( min(M,N) ulp )
 | 
						|
*>
 | 
						|
*> (7)   | I - VT VT' | / ( min(M,N) ulp )
 | 
						|
*>
 | 
						|
*> (8)   S1 contains min(M,N) nonnegative values in decreasing order.
 | 
						|
*>       (Return 0 if true, 1/ULP if false.)
 | 
						|
*>
 | 
						|
*> (9)   | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
 | 
						|
*>                                   computing U and V.
 | 
						|
*>
 | 
						|
*> (10)  0 if the true singular values of B are within THRESH of
 | 
						|
*>       those in S1.  2*THRESH if they are not.  (Tested using
 | 
						|
*>       DSVDCH)
 | 
						|
*>
 | 
						|
*> Test DBDSQR on matrix A
 | 
						|
*>
 | 
						|
*> (11)  | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp )
 | 
						|
*>
 | 
						|
*> (12)  | X - (QU) Z | / ( |X| max(M,k) ulp )
 | 
						|
*>
 | 
						|
*> (13)  | I - (QU)'(QU) | / ( M ulp )
 | 
						|
*>
 | 
						|
*> (14)  | I - (VT PT) (PT'VT') | / ( N ulp )
 | 
						|
*>
 | 
						|
*> Test DBDSDC on bidiagonal matrix B
 | 
						|
*>
 | 
						|
*> (15)  | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
 | 
						|
*>
 | 
						|
*> (16)  | I - U' U | / ( min(M,N) ulp )
 | 
						|
*>
 | 
						|
*> (17)  | I - VT VT' | / ( min(M,N) ulp )
 | 
						|
*>
 | 
						|
*> (18)  S1 contains min(M,N) nonnegative values in decreasing order.
 | 
						|
*>       (Return 0 if true, 1/ULP if false.)
 | 
						|
*>
 | 
						|
*> (19)  | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
 | 
						|
*>                                   computing U and V.
 | 
						|
*> The possible matrix types are
 | 
						|
*>
 | 
						|
*> (1)  The zero matrix.
 | 
						|
*> (2)  The identity matrix.
 | 
						|
*>
 | 
						|
*> (3)  A diagonal matrix with evenly spaced entries
 | 
						|
*>      1, ..., ULP  and random signs.
 | 
						|
*>      (ULP = (first number larger than 1) - 1 )
 | 
						|
*> (4)  A diagonal matrix with geometrically spaced entries
 | 
						|
*>      1, ..., ULP  and random signs.
 | 
						|
*> (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | 
						|
*>      and random signs.
 | 
						|
*>
 | 
						|
*> (6)  Same as (3), but multiplied by SQRT( overflow threshold )
 | 
						|
*> (7)  Same as (3), but multiplied by SQRT( underflow threshold )
 | 
						|
*>
 | 
						|
*> (8)  A matrix of the form  U D V, where U and V are orthogonal and
 | 
						|
*>      D has evenly spaced entries 1, ..., ULP with random signs
 | 
						|
*>      on the diagonal.
 | 
						|
*>
 | 
						|
*> (9)  A matrix of the form  U D V, where U and V are orthogonal and
 | 
						|
*>      D has geometrically spaced entries 1, ..., ULP with random
 | 
						|
*>      signs on the diagonal.
 | 
						|
*>
 | 
						|
*> (10) A matrix of the form  U D V, where U and V are orthogonal and
 | 
						|
*>      D has "clustered" entries 1, ULP,..., ULP with random
 | 
						|
*>      signs on the diagonal.
 | 
						|
*>
 | 
						|
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
 | 
						|
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
 | 
						|
*>
 | 
						|
*> (13) Rectangular matrix with random entries chosen from (-1,1).
 | 
						|
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
 | 
						|
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
 | 
						|
*>
 | 
						|
*> Special case:
 | 
						|
*> (16) A bidiagonal matrix with random entries chosen from a
 | 
						|
*>      logarithmic distribution on [ulp^2,ulp^(-2)]  (I.e., each
 | 
						|
*>      entry is  e^x, where x is chosen uniformly on
 | 
						|
*>      [ 2 log(ulp), -2 log(ulp) ] .)  For *this* type:
 | 
						|
*>      (a) DGEBRD is not called to reduce it to bidiagonal form.
 | 
						|
*>      (b) the bidiagonal is  min(M,N) x min(M,N); if M<N, the
 | 
						|
*>          matrix will be lower bidiagonal, otherwise upper.
 | 
						|
*>      (c) only tests 5--8 and 14 are performed.
 | 
						|
*>
 | 
						|
*> A subset of the full set of matrix types may be selected through
 | 
						|
*> the logical array DOTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NSIZES
 | 
						|
*> \verbatim
 | 
						|
*>          NSIZES is INTEGER
 | 
						|
*>          The number of values of M and N contained in the vectors
 | 
						|
*>          MVAL and NVAL.  The matrix sizes are used in pairs (M,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MVAL
 | 
						|
*> \verbatim
 | 
						|
*>          MVAL is INTEGER array, dimension (NM)
 | 
						|
*>          The values of the matrix row dimension M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NVAL is INTEGER array, dimension (NM)
 | 
						|
*>          The values of the matrix column dimension N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NTYPES
 | 
						|
*> \verbatim
 | 
						|
*>          NTYPES is INTEGER
 | 
						|
*>          The number of elements in DOTYPE.   If it is zero, DCHKBD
 | 
						|
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | 
						|
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | 
						|
*>          defined, which is to use whatever matrices are in A and B.
 | 
						|
*>          This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | 
						|
*>          DOTYPE(MAXTYP+1) is .TRUE. .
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
 | 
						|
*>          of type j will be generated.  If NTYPES is smaller than the
 | 
						|
*>          maximum number of types defined (PARAMETER MAXTYP), then
 | 
						|
*>          types NTYPES+1 through MAXTYP will not be generated.  If
 | 
						|
*>          NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
 | 
						|
*>          DOTYPE(NTYPES) will be ignored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of columns in the "right-hand side" matrices X, Y,
 | 
						|
*>          and Z, used in testing DBDSQR.  If NRHS = 0, then the
 | 
						|
*>          operations on the right-hand side will not be tested.
 | 
						|
*>          NRHS must be at least 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry ISEED specifies the seed of the random number
 | 
						|
*>          generator. The array elements should be between 0 and 4095;
 | 
						|
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | 
						|
*>          be odd.  The values of ISEED are changed on exit, and can be
 | 
						|
*>          used in the next call to DCHKBD to continue the same random
 | 
						|
*>          number sequence.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is DOUBLE PRECISION
 | 
						|
*>          The threshold value for the test ratios.  A result is
 | 
						|
*>          included in the output file if RESULT >= THRESH.  To have
 | 
						|
*>          every test ratio printed, use THRESH = 0.  Note that the
 | 
						|
*>          expected value of the test ratios is O(1), so THRESH should
 | 
						|
*>          be a reasonably small multiple of 1, e.g., 10 or 100.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,NMAX)
 | 
						|
*>          where NMAX is the maximum value of N in NVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,MMAX),
 | 
						|
*>          where MMAX is the maximum value of M in MVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BD
 | 
						|
*> \verbatim
 | 
						|
*>          BD is DOUBLE PRECISION array, dimension
 | 
						|
*>                      (max(min(MVAL(j),NVAL(j))))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BE
 | 
						|
*> \verbatim
 | 
						|
*>          BE is DOUBLE PRECISION array, dimension
 | 
						|
*>                      (max(min(MVAL(j),NVAL(j))))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S1
 | 
						|
*> \verbatim
 | 
						|
*>          S1 is DOUBLE PRECISION array, dimension
 | 
						|
*>                      (max(min(MVAL(j),NVAL(j))))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S2
 | 
						|
*> \verbatim
 | 
						|
*>          S2 is DOUBLE PRECISION array, dimension
 | 
						|
*>                      (max(min(MVAL(j),NVAL(j))))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the arrays X, Y, and Z.
 | 
						|
*>          LDX >= max(1,MMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ,MMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.  LDQ >= max(1,MMAX).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PT
 | 
						|
*> \verbatim
 | 
						|
*>          PT is DOUBLE PRECISION array, dimension (LDPT,NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDPT
 | 
						|
*> \verbatim
 | 
						|
*>          LDPT is INTEGER
 | 
						|
*>          The leading dimension of the arrays PT, U, and V.
 | 
						|
*>          LDPT >= max(1, max(min(MVAL(j),NVAL(j)))).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is DOUBLE PRECISION array, dimension
 | 
						|
*>                      (LDPT,max(min(MVAL(j),NVAL(j))))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VT
 | 
						|
*> \verbatim
 | 
						|
*>          VT is DOUBLE PRECISION array, dimension
 | 
						|
*>                      (LDPT,max(min(MVAL(j),NVAL(j))))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The number of entries in WORK.  This must be at least
 | 
						|
*>          3(M+N) and  M(M + max(M,N,k) + 1) + N*min(M,N)  for all
 | 
						|
*>          pairs  (M,N)=(MM(j),NN(j))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension at least 8*min(M,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUT is INTEGER
 | 
						|
*>          The FORTRAN unit number for printing out error messages
 | 
						|
*>          (e.g., if a routine returns IINFO not equal to 0.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          If 0, then everything ran OK.
 | 
						|
*>           -1: NSIZES < 0
 | 
						|
*>           -2: Some MM(j) < 0
 | 
						|
*>           -3: Some NN(j) < 0
 | 
						|
*>           -4: NTYPES < 0
 | 
						|
*>           -6: NRHS  < 0
 | 
						|
*>           -8: THRESH < 0
 | 
						|
*>          -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
 | 
						|
*>          -17: LDB < 1 or LDB < MMAX.
 | 
						|
*>          -21: LDQ < 1 or LDQ < MMAX.
 | 
						|
*>          -23: LDPT< 1 or LDPT< MNMAX.
 | 
						|
*>          -27: LWORK too small.
 | 
						|
*>          If  DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR,
 | 
						|
*>              returns an error code, the
 | 
						|
*>              absolute value of it is returned.
 | 
						|
*>
 | 
						|
*>-----------------------------------------------------------------------
 | 
						|
*>
 | 
						|
*>     Some Local Variables and Parameters:
 | 
						|
*>     ---- ----- --------- --- ----------
 | 
						|
*>
 | 
						|
*>     ZERO, ONE       Real 0 and 1.
 | 
						|
*>     MAXTYP          The number of types defined.
 | 
						|
*>     NTEST           The number of tests performed, or which can
 | 
						|
*>                     be performed so far, for the current matrix.
 | 
						|
*>     MMAX            Largest value in NN.
 | 
						|
*>     NMAX            Largest value in NN.
 | 
						|
*>     MNMIN           min(MM(j), NN(j)) (the dimension of the bidiagonal
 | 
						|
*>                     matrix.)
 | 
						|
*>     MNMAX           The maximum value of MNMIN for j=1,...,NSIZES.
 | 
						|
*>     NFAIL           The number of tests which have exceeded THRESH
 | 
						|
*>     COND, IMODE     Values to be passed to the matrix generators.
 | 
						|
*>     ANORM           Norm of A; passed to matrix generators.
 | 
						|
*>
 | 
						|
*>     OVFL, UNFL      Overflow and underflow thresholds.
 | 
						|
*>     RTOVFL, RTUNFL  Square roots of the previous 2 values.
 | 
						|
*>     ULP, ULPINV     Finest relative precision and its inverse.
 | 
						|
*>
 | 
						|
*>             The following four arrays decode JTYPE:
 | 
						|
*>     KTYPE(j)        The general type (1-10) for type "j".
 | 
						|
*>     KMODE(j)        The MODE value to be passed to the matrix
 | 
						|
*>                     generator for type "j".
 | 
						|
*>     KMAGN(j)        The order of magnitude ( O(1),
 | 
						|
*>                     O(overflow^(1/2) ), O(underflow^(1/2) )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
 | 
						|
     $                   ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
 | 
						|
     $                   Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
 | 
						|
     $                   IWORK, NOUT, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
 | 
						|
     $                   NSIZES, NTYPES
 | 
						|
      DOUBLE PRECISION   THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
 | 
						|
     $                   Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
 | 
						|
     $                   VT( LDPT, * ), WORK( * ), X( LDX, * ),
 | 
						|
     $                   Y( LDX, * ), Z( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* ======================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TWO, HALF
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 | 
						|
     $                   HALF = 0.5D0 )
 | 
						|
      INTEGER            MAXTYP
 | 
						|
      PARAMETER          ( MAXTYP = 16 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            BADMM, BADNN, BIDIAG
 | 
						|
      CHARACTER          UPLO
 | 
						|
      CHARACTER*3        PATH
 | 
						|
      INTEGER            I, IINFO, IMODE, ITYPE, J, JCOL, JSIZE, JTYPE,
 | 
						|
     $                   LOG2UI, M, MINWRK, MMAX, MNMAX, MNMIN, MQ,
 | 
						|
     $                   MTYPES, N, NFAIL, NMAX, NTEST
 | 
						|
      DOUBLE PRECISION   AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
 | 
						|
     $                   TEMP1, TEMP2, ULP, ULPINV, UNFL
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            IDUM( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
 | 
						|
     $                   KMODE( MAXTYP ), KTYPE( MAXTYP )
 | 
						|
      DOUBLE PRECISION   DUM( 1 ), DUMMA( 1 ), RESULT( 19 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLARND
 | 
						|
      EXTERNAL           DLAMCH, DLARND
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ALASUM, DBDSDC, DBDSQR, DBDT01, DBDT02, DBDT03,
 | 
						|
     $                   DCOPY, DGEBRD, DGEMM, DLABAD, DLACPY, DLAHD2,
 | 
						|
     $                   DLASET, DLATMR, DLATMS, DORGBR, DORT01, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, EXP, INT, LOG, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      LOGICAL            LERR, OK
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
      INTEGER            INFOT, NUNIT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               KTYPE / 1, 2, 5*4, 5*6, 3*9, 10 /
 | 
						|
      DATA               KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3, 0 /
 | 
						|
      DATA               KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
 | 
						|
     $                   0, 0, 0 /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      BADMM = .FALSE.
 | 
						|
      BADNN = .FALSE.
 | 
						|
      MMAX = 1
 | 
						|
      NMAX = 1
 | 
						|
      MNMAX = 1
 | 
						|
      MINWRK = 1
 | 
						|
      DO 10 J = 1, NSIZES
 | 
						|
         MMAX = MAX( MMAX, MVAL( J ) )
 | 
						|
         IF( MVAL( J ).LT.0 )
 | 
						|
     $      BADMM = .TRUE.
 | 
						|
         NMAX = MAX( NMAX, NVAL( J ) )
 | 
						|
         IF( NVAL( J ).LT.0 )
 | 
						|
     $      BADNN = .TRUE.
 | 
						|
         MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
 | 
						|
         MINWRK = MAX( MINWRK, 3*( MVAL( J )+NVAL( J ) ),
 | 
						|
     $            MVAL( J )*( MVAL( J )+MAX( MVAL( J ), NVAL( J ),
 | 
						|
     $            NRHS )+1 )+NVAL( J )*MIN( NVAL( J ), MVAL( J ) ) )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      IF( NSIZES.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( BADMM ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( BADNN ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NTYPES.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDA.LT.MMAX ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( LDX.LT.MMAX ) THEN
 | 
						|
         INFO = -17
 | 
						|
      ELSE IF( LDQ.LT.MMAX ) THEN
 | 
						|
         INFO = -21
 | 
						|
      ELSE IF( LDPT.LT.MNMAX ) THEN
 | 
						|
         INFO = -23
 | 
						|
      ELSE IF( MINWRK.GT.LWORK ) THEN
 | 
						|
         INFO = -27
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DCHKBD', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize constants
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Double precision'
 | 
						|
      PATH( 2: 3 ) = 'BD'
 | 
						|
      NFAIL = 0
 | 
						|
      NTEST = 0
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = DLAMCH( 'Overflow' )
 | 
						|
      CALL DLABAD( UNFL, OVFL )
 | 
						|
      ULP = DLAMCH( 'Precision' )
 | 
						|
      ULPINV = ONE / ULP
 | 
						|
      LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
 | 
						|
      RTUNFL = SQRT( UNFL )
 | 
						|
      RTOVFL = SQRT( OVFL )
 | 
						|
      INFOT = 0
 | 
						|
*
 | 
						|
*     Loop over sizes, types
 | 
						|
*
 | 
						|
      DO 200 JSIZE = 1, NSIZES
 | 
						|
         M = MVAL( JSIZE )
 | 
						|
         N = NVAL( JSIZE )
 | 
						|
         MNMIN = MIN( M, N )
 | 
						|
         AMNINV = ONE / MAX( M, N, 1 )
 | 
						|
*
 | 
						|
         IF( NSIZES.NE.1 ) THEN
 | 
						|
            MTYPES = MIN( MAXTYP, NTYPES )
 | 
						|
         ELSE
 | 
						|
            MTYPES = MIN( MAXTYP+1, NTYPES )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 190 JTYPE = 1, MTYPES
 | 
						|
            IF( .NOT.DOTYPE( JTYPE ) )
 | 
						|
     $         GO TO 190
 | 
						|
*
 | 
						|
            DO 20 J = 1, 4
 | 
						|
               IOLDSD( J ) = ISEED( J )
 | 
						|
   20       CONTINUE
 | 
						|
*
 | 
						|
            DO 30 J = 1, 14
 | 
						|
               RESULT( J ) = -ONE
 | 
						|
   30       CONTINUE
 | 
						|
*
 | 
						|
            UPLO = ' '
 | 
						|
*
 | 
						|
*           Compute "A"
 | 
						|
*
 | 
						|
*           Control parameters:
 | 
						|
*
 | 
						|
*           KMAGN  KMODE        KTYPE
 | 
						|
*       =1  O(1)   clustered 1  zero
 | 
						|
*       =2  large  clustered 2  identity
 | 
						|
*       =3  small  exponential  (none)
 | 
						|
*       =4         arithmetic   diagonal, (w/ eigenvalues)
 | 
						|
*       =5         random       symmetric, w/ eigenvalues
 | 
						|
*       =6                      nonsymmetric, w/ singular values
 | 
						|
*       =7                      random diagonal
 | 
						|
*       =8                      random symmetric
 | 
						|
*       =9                      random nonsymmetric
 | 
						|
*       =10                     random bidiagonal (log. distrib.)
 | 
						|
*
 | 
						|
            IF( MTYPES.GT.MAXTYP )
 | 
						|
     $         GO TO 100
 | 
						|
*
 | 
						|
            ITYPE = KTYPE( JTYPE )
 | 
						|
            IMODE = KMODE( JTYPE )
 | 
						|
*
 | 
						|
*           Compute norm
 | 
						|
*
 | 
						|
            GO TO ( 40, 50, 60 )KMAGN( JTYPE )
 | 
						|
*
 | 
						|
   40       CONTINUE
 | 
						|
            ANORM = ONE
 | 
						|
            GO TO 70
 | 
						|
*
 | 
						|
   50       CONTINUE
 | 
						|
            ANORM = ( RTOVFL*ULP )*AMNINV
 | 
						|
            GO TO 70
 | 
						|
*
 | 
						|
   60       CONTINUE
 | 
						|
            ANORM = RTUNFL*MAX( M, N )*ULPINV
 | 
						|
            GO TO 70
 | 
						|
*
 | 
						|
   70       CONTINUE
 | 
						|
*
 | 
						|
            CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | 
						|
            IINFO = 0
 | 
						|
            COND = ULPINV
 | 
						|
*
 | 
						|
            BIDIAG = .FALSE.
 | 
						|
            IF( ITYPE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              Zero matrix
 | 
						|
*
 | 
						|
               IINFO = 0
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*              Identity
 | 
						|
*
 | 
						|
               DO 80 JCOL = 1, MNMIN
 | 
						|
                  A( JCOL, JCOL ) = ANORM
 | 
						|
   80          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*              Diagonal Matrix, [Eigen]values Specified
 | 
						|
*
 | 
						|
               CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, IMODE,
 | 
						|
     $                      COND, ANORM, 0, 0, 'N', A, LDA,
 | 
						|
     $                      WORK( MNMIN+1 ), IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.5 ) THEN
 | 
						|
*
 | 
						|
*              Symmetric, eigenvalues specified
 | 
						|
*
 | 
						|
               CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, IMODE,
 | 
						|
     $                      COND, ANORM, M, N, 'N', A, LDA,
 | 
						|
     $                      WORK( MNMIN+1 ), IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.6 ) THEN
 | 
						|
*
 | 
						|
*              Nonsymmetric, singular values specified
 | 
						|
*
 | 
						|
               CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
 | 
						|
     $                      ANORM, M, N, 'N', A, LDA, WORK( MNMIN+1 ),
 | 
						|
     $                      IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.7 ) THEN
 | 
						|
*
 | 
						|
*              Diagonal, random entries
 | 
						|
*
 | 
						|
               CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, 6, ONE,
 | 
						|
     $                      ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*MNMIN+1 ), 1, ONE, 'N', IWORK, 0, 0,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.8 ) THEN
 | 
						|
*
 | 
						|
*              Symmetric, random entries
 | 
						|
*
 | 
						|
               CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, 6, ONE,
 | 
						|
     $                      ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
 | 
						|
     $                      WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.9 ) THEN
 | 
						|
*
 | 
						|
*              Nonsymmetric, random entries
 | 
						|
*
 | 
						|
               CALL DLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( MNMIN+1 ), 1, ONE,
 | 
						|
     $                      WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.10 ) THEN
 | 
						|
*
 | 
						|
*              Bidiagonal, random entries
 | 
						|
*
 | 
						|
               TEMP1 = -TWO*LOG( ULP )
 | 
						|
               DO 90 J = 1, MNMIN
 | 
						|
                  BD( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
 | 
						|
                  IF( J.LT.MNMIN )
 | 
						|
     $               BE( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
 | 
						|
   90          CONTINUE
 | 
						|
*
 | 
						|
               IINFO = 0
 | 
						|
               BIDIAG = .TRUE.
 | 
						|
               IF( M.GE.N ) THEN
 | 
						|
                  UPLO = 'U'
 | 
						|
               ELSE
 | 
						|
                  UPLO = 'L'
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               IINFO = 1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( IINFO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*              Generate Right-Hand Side
 | 
						|
*
 | 
						|
               IF( BIDIAG ) THEN
 | 
						|
                  CALL DLATMR( MNMIN, NRHS, 'S', ISEED, 'N', WORK, 6,
 | 
						|
     $                         ONE, ONE, 'T', 'N', WORK( MNMIN+1 ), 1,
 | 
						|
     $                         ONE, WORK( 2*MNMIN+1 ), 1, ONE, 'N',
 | 
						|
     $                         IWORK, MNMIN, NRHS, ZERO, ONE, 'NO', Y,
 | 
						|
     $                         LDX, IWORK, IINFO )
 | 
						|
               ELSE
 | 
						|
                  CALL DLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE,
 | 
						|
     $                         ONE, 'T', 'N', WORK( M+1 ), 1, ONE,
 | 
						|
     $                         WORK( 2*M+1 ), 1, ONE, 'N', IWORK, M,
 | 
						|
     $                         NRHS, ZERO, ONE, 'NO', X, LDX, IWORK,
 | 
						|
     $                         IINFO )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Error Exit
 | 
						|
*
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               WRITE( NOUT, FMT = 9998 )'Generator', IINFO, M, N,
 | 
						|
     $            JTYPE, IOLDSD
 | 
						|
               INFO = ABS( IINFO )
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
  100       CONTINUE
 | 
						|
*
 | 
						|
*           Call DGEBRD and DORGBR to compute B, Q, and P, do tests.
 | 
						|
*
 | 
						|
            IF( .NOT.BIDIAG ) THEN
 | 
						|
*
 | 
						|
*              Compute transformations to reduce A to bidiagonal form:
 | 
						|
*              B := Q' * A * P.
 | 
						|
*
 | 
						|
               CALL DLACPY( ' ', M, N, A, LDA, Q, LDQ )
 | 
						|
               CALL DGEBRD( M, N, Q, LDQ, BD, BE, WORK, WORK( MNMIN+1 ),
 | 
						|
     $                      WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
 | 
						|
*
 | 
						|
*              Check error code from DGEBRD.
 | 
						|
*
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  WRITE( NOUT, FMT = 9998 )'DGEBRD', IINFO, M, N,
 | 
						|
     $               JTYPE, IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               CALL DLACPY( ' ', M, N, Q, LDQ, PT, LDPT )
 | 
						|
               IF( M.GE.N ) THEN
 | 
						|
                  UPLO = 'U'
 | 
						|
               ELSE
 | 
						|
                  UPLO = 'L'
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Generate Q
 | 
						|
*
 | 
						|
               MQ = M
 | 
						|
               IF( NRHS.LE.0 )
 | 
						|
     $            MQ = MNMIN
 | 
						|
               CALL DORGBR( 'Q', M, MQ, N, Q, LDQ, WORK,
 | 
						|
     $                      WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
 | 
						|
*
 | 
						|
*              Check error code from DORGBR.
 | 
						|
*
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  WRITE( NOUT, FMT = 9998 )'DORGBR(Q)', IINFO, M, N,
 | 
						|
     $               JTYPE, IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Generate P'
 | 
						|
*
 | 
						|
               CALL DORGBR( 'P', MNMIN, N, M, PT, LDPT, WORK( MNMIN+1 ),
 | 
						|
     $                      WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
 | 
						|
*
 | 
						|
*              Check error code from DORGBR.
 | 
						|
*
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  WRITE( NOUT, FMT = 9998 )'DORGBR(P)', IINFO, M, N,
 | 
						|
     $               JTYPE, IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Apply Q' to an M by NRHS matrix X:  Y := Q' * X.
 | 
						|
*
 | 
						|
               CALL DGEMM( 'Transpose', 'No transpose', M, NRHS, M, ONE,
 | 
						|
     $                     Q, LDQ, X, LDX, ZERO, Y, LDX )
 | 
						|
*
 | 
						|
*              Test 1:  Check the decomposition A := Q * B * PT
 | 
						|
*                   2:  Check the orthogonality of Q
 | 
						|
*                   3:  Check the orthogonality of PT
 | 
						|
*
 | 
						|
               CALL DBDT01( M, N, 1, A, LDA, Q, LDQ, BD, BE, PT, LDPT,
 | 
						|
     $                      WORK, RESULT( 1 ) )
 | 
						|
               CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
 | 
						|
     $                      RESULT( 2 ) )
 | 
						|
               CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
 | 
						|
     $                      RESULT( 3 ) )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Use DBDSQR to form the SVD of the bidiagonal matrix B:
 | 
						|
*           B := U * S1 * VT, and compute Z = U' * Y.
 | 
						|
*
 | 
						|
            CALL DCOPY( MNMIN, BD, 1, S1, 1 )
 | 
						|
            IF( MNMIN.GT.0 )
 | 
						|
     $         CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
 | 
						|
            CALL DLACPY( ' ', M, NRHS, Y, LDX, Z, LDX )
 | 
						|
            CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
 | 
						|
            CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
 | 
						|
*
 | 
						|
            CALL DBDSQR( UPLO, MNMIN, MNMIN, MNMIN, NRHS, S1, WORK, VT,
 | 
						|
     $                   LDPT, U, LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
 | 
						|
*
 | 
						|
*           Check error code from DBDSQR.
 | 
						|
*
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               WRITE( NOUT, FMT = 9998 )'DBDSQR(vects)', IINFO, M, N,
 | 
						|
     $            JTYPE, IOLDSD
 | 
						|
               INFO = ABS( IINFO )
 | 
						|
               IF( IINFO.LT.0 ) THEN
 | 
						|
                  RETURN
 | 
						|
               ELSE
 | 
						|
                  RESULT( 4 ) = ULPINV
 | 
						|
                  GO TO 170
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Use DBDSQR to compute only the singular values of the
 | 
						|
*           bidiagonal matrix B;  U, VT, and Z should not be modified.
 | 
						|
*
 | 
						|
            CALL DCOPY( MNMIN, BD, 1, S2, 1 )
 | 
						|
            IF( MNMIN.GT.0 )
 | 
						|
     $         CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
 | 
						|
*
 | 
						|
            CALL DBDSQR( UPLO, MNMIN, 0, 0, 0, S2, WORK, VT, LDPT, U,
 | 
						|
     $                   LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
 | 
						|
*
 | 
						|
*           Check error code from DBDSQR.
 | 
						|
*
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               WRITE( NOUT, FMT = 9998 )'DBDSQR(values)', IINFO, M, N,
 | 
						|
     $            JTYPE, IOLDSD
 | 
						|
               INFO = ABS( IINFO )
 | 
						|
               IF( IINFO.LT.0 ) THEN
 | 
						|
                  RETURN
 | 
						|
               ELSE
 | 
						|
                  RESULT( 9 ) = ULPINV
 | 
						|
                  GO TO 170
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Test 4:  Check the decomposition B := U * S1 * VT
 | 
						|
*                5:  Check the computation Z := U' * Y
 | 
						|
*                6:  Check the orthogonality of U
 | 
						|
*                7:  Check the orthogonality of VT
 | 
						|
*
 | 
						|
            CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
 | 
						|
     $                   WORK, RESULT( 4 ) )
 | 
						|
            CALL DBDT02( MNMIN, NRHS, Y, LDX, Z, LDX, U, LDPT, WORK,
 | 
						|
     $                   RESULT( 5 ) )
 | 
						|
            CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
 | 
						|
     $                   RESULT( 6 ) )
 | 
						|
            CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
 | 
						|
     $                   RESULT( 7 ) )
 | 
						|
*
 | 
						|
*           Test 8:  Check that the singular values are sorted in
 | 
						|
*                    non-increasing order and are non-negative
 | 
						|
*
 | 
						|
            RESULT( 8 ) = ZERO
 | 
						|
            DO 110 I = 1, MNMIN - 1
 | 
						|
               IF( S1( I ).LT.S1( I+1 ) )
 | 
						|
     $            RESULT( 8 ) = ULPINV
 | 
						|
               IF( S1( I ).LT.ZERO )
 | 
						|
     $            RESULT( 8 ) = ULPINV
 | 
						|
  110       CONTINUE
 | 
						|
            IF( MNMIN.GE.1 ) THEN
 | 
						|
               IF( S1( MNMIN ).LT.ZERO )
 | 
						|
     $            RESULT( 8 ) = ULPINV
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Test 9:  Compare DBDSQR with and without singular vectors
 | 
						|
*
 | 
						|
            TEMP2 = ZERO
 | 
						|
*
 | 
						|
            DO 120 J = 1, MNMIN
 | 
						|
               TEMP1 = ABS( S1( J )-S2( J ) ) /
 | 
						|
     $                 MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
 | 
						|
     $                 ULP*MAX( ABS( S1( J ) ), ABS( S2( J ) ) ) )
 | 
						|
               TEMP2 = MAX( TEMP1, TEMP2 )
 | 
						|
  120       CONTINUE
 | 
						|
*
 | 
						|
            RESULT( 9 ) = TEMP2
 | 
						|
*
 | 
						|
*           Test 10:  Sturm sequence test of singular values
 | 
						|
*                     Go up by factors of two until it succeeds
 | 
						|
*
 | 
						|
            TEMP1 = THRESH*( HALF-ULP )
 | 
						|
*
 | 
						|
            DO 130 J = 0, LOG2UI
 | 
						|
*               CALL DSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO )
 | 
						|
               IF( IINFO.EQ.0 )
 | 
						|
     $            GO TO 140
 | 
						|
               TEMP1 = TEMP1*TWO
 | 
						|
  130       CONTINUE
 | 
						|
*
 | 
						|
  140       CONTINUE
 | 
						|
            RESULT( 10 ) = TEMP1
 | 
						|
*
 | 
						|
*           Use DBDSQR to form the decomposition A := (QU) S (VT PT)
 | 
						|
*           from the bidiagonal form A := Q B PT.
 | 
						|
*
 | 
						|
            IF( .NOT.BIDIAG ) THEN
 | 
						|
               CALL DCOPY( MNMIN, BD, 1, S2, 1 )
 | 
						|
               IF( MNMIN.GT.0 )
 | 
						|
     $            CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
 | 
						|
*
 | 
						|
               CALL DBDSQR( UPLO, MNMIN, N, M, NRHS, S2, WORK, PT, LDPT,
 | 
						|
     $                      Q, LDQ, Y, LDX, WORK( MNMIN+1 ), IINFO )
 | 
						|
*
 | 
						|
*              Test 11:  Check the decomposition A := Q*U * S2 * VT*PT
 | 
						|
*                   12:  Check the computation Z := U' * Q' * X
 | 
						|
*                   13:  Check the orthogonality of Q*U
 | 
						|
*                   14:  Check the orthogonality of VT*PT
 | 
						|
*
 | 
						|
               CALL DBDT01( M, N, 0, A, LDA, Q, LDQ, S2, DUMMA, PT,
 | 
						|
     $                      LDPT, WORK, RESULT( 11 ) )
 | 
						|
               CALL DBDT02( M, NRHS, X, LDX, Y, LDX, Q, LDQ, WORK,
 | 
						|
     $                      RESULT( 12 ) )
 | 
						|
               CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
 | 
						|
     $                      RESULT( 13 ) )
 | 
						|
               CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
 | 
						|
     $                      RESULT( 14 ) )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Use DBDSDC to form the SVD of the bidiagonal matrix B:
 | 
						|
*           B := U * S1 * VT
 | 
						|
*
 | 
						|
            CALL DCOPY( MNMIN, BD, 1, S1, 1 )
 | 
						|
            IF( MNMIN.GT.0 )
 | 
						|
     $         CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
 | 
						|
            CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
 | 
						|
            CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
 | 
						|
*
 | 
						|
            CALL DBDSDC( UPLO, 'I', MNMIN, S1, WORK, U, LDPT, VT, LDPT,
 | 
						|
     $                   DUM, IDUM, WORK( MNMIN+1 ), IWORK, IINFO )
 | 
						|
*
 | 
						|
*           Check error code from DBDSDC.
 | 
						|
*
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               WRITE( NOUT, FMT = 9998 )'DBDSDC(vects)', IINFO, M, N,
 | 
						|
     $            JTYPE, IOLDSD
 | 
						|
               INFO = ABS( IINFO )
 | 
						|
               IF( IINFO.LT.0 ) THEN
 | 
						|
                  RETURN
 | 
						|
               ELSE
 | 
						|
                  RESULT( 15 ) = ULPINV
 | 
						|
                  GO TO 170
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Use DBDSDC to compute only the singular values of the
 | 
						|
*           bidiagonal matrix B;  U and VT should not be modified.
 | 
						|
*
 | 
						|
            CALL DCOPY( MNMIN, BD, 1, S2, 1 )
 | 
						|
            IF( MNMIN.GT.0 )
 | 
						|
     $         CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
 | 
						|
*
 | 
						|
            CALL DBDSDC( UPLO, 'N', MNMIN, S2, WORK, DUM, 1, DUM, 1,
 | 
						|
     $                   DUM, IDUM, WORK( MNMIN+1 ), IWORK, IINFO )
 | 
						|
*
 | 
						|
*           Check error code from DBDSDC.
 | 
						|
*
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               WRITE( NOUT, FMT = 9998 )'DBDSDC(values)', IINFO, M, N,
 | 
						|
     $            JTYPE, IOLDSD
 | 
						|
               INFO = ABS( IINFO )
 | 
						|
               IF( IINFO.LT.0 ) THEN
 | 
						|
                  RETURN
 | 
						|
               ELSE
 | 
						|
                  RESULT( 18 ) = ULPINV
 | 
						|
                  GO TO 170
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Test 15:  Check the decomposition B := U * S1 * VT
 | 
						|
*                16:  Check the orthogonality of U
 | 
						|
*                17:  Check the orthogonality of VT
 | 
						|
*
 | 
						|
            CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
 | 
						|
     $                   WORK, RESULT( 15 ) )
 | 
						|
            CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
 | 
						|
     $                   RESULT( 16 ) )
 | 
						|
            CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
 | 
						|
     $                   RESULT( 17 ) )
 | 
						|
*
 | 
						|
*           Test 18:  Check that the singular values are sorted in
 | 
						|
*                     non-increasing order and are non-negative
 | 
						|
*
 | 
						|
            RESULT( 18 ) = ZERO
 | 
						|
            DO 150 I = 1, MNMIN - 1
 | 
						|
               IF( S1( I ).LT.S1( I+1 ) )
 | 
						|
     $            RESULT( 18 ) = ULPINV
 | 
						|
               IF( S1( I ).LT.ZERO )
 | 
						|
     $            RESULT( 18 ) = ULPINV
 | 
						|
  150       CONTINUE
 | 
						|
            IF( MNMIN.GE.1 ) THEN
 | 
						|
               IF( S1( MNMIN ).LT.ZERO )
 | 
						|
     $            RESULT( 18 ) = ULPINV
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Test 19:  Compare DBDSQR with and without singular vectors
 | 
						|
*
 | 
						|
            TEMP2 = ZERO
 | 
						|
*
 | 
						|
            DO 160 J = 1, MNMIN
 | 
						|
               TEMP1 = ABS( S1( J )-S2( J ) ) /
 | 
						|
     $                 MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
 | 
						|
     $                 ULP*MAX( ABS( S1( 1 ) ), ABS( S2( 1 ) ) ) )
 | 
						|
               TEMP2 = MAX( TEMP1, TEMP2 )
 | 
						|
  160       CONTINUE
 | 
						|
*
 | 
						|
            RESULT( 19 ) = TEMP2
 | 
						|
*
 | 
						|
*           End of Loop -- Check for RESULT(j) > THRESH
 | 
						|
*
 | 
						|
  170       CONTINUE
 | 
						|
            DO 180 J = 1, 19
 | 
						|
               IF( RESULT( J ).GE.THRESH ) THEN
 | 
						|
                  IF( NFAIL.EQ.0 )
 | 
						|
     $               CALL DLAHD2( NOUT, PATH )
 | 
						|
                  WRITE( NOUT, FMT = 9999 )M, N, JTYPE, IOLDSD, J,
 | 
						|
     $               RESULT( J )
 | 
						|
                  NFAIL = NFAIL + 1
 | 
						|
               END IF
 | 
						|
  180       CONTINUE
 | 
						|
            IF( .NOT.BIDIAG ) THEN
 | 
						|
               NTEST = NTEST + 19
 | 
						|
            ELSE
 | 
						|
               NTEST = NTEST + 5
 | 
						|
            END IF
 | 
						|
*
 | 
						|
  190    CONTINUE
 | 
						|
  200 CONTINUE
 | 
						|
*
 | 
						|
*     Summary
 | 
						|
*
 | 
						|
      CALL ALASUM( PATH, NOUT, NFAIL, NTEST, 0 )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DCHKBD
 | 
						|
*
 | 
						|
 9999 FORMAT( ' M=', I5, ', N=', I5, ', type ', I2, ', seed=',
 | 
						|
     $      4( I4, ',' ), ' test(', I2, ')=', G11.4 )
 | 
						|
 9998 FORMAT( ' DCHKBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=',
 | 
						|
     $      I6, ', N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
 | 
						|
     $      I5, ')' )
 | 
						|
*
 | 
						|
      END
 |