200 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CBDT02
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
 | 
						|
*                          RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDB, LDC, LDU, M, N
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            B( LDB, * ), C( LDC, * ), U( LDU, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CBDT02 tests the change of basis C = U' * B by computing the residual
 | 
						|
*>
 | 
						|
*>    RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
 | 
						|
*>
 | 
						|
*> where B and C are M by N matrices, U is an M by M orthogonal matrix,
 | 
						|
*> and EPS is the machine precision.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrices B and C and the order of
 | 
						|
*>          the matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices B and C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,N)
 | 
						|
*>          The m by n matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX array, dimension (LDC,N)
 | 
						|
*>          The m by n matrix C, assumed to contain U' * B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C.  LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX array, dimension (LDU,M)
 | 
						|
*>          The m by m orthogonal matrix U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U.  LDU >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDB, LDC, LDU, M, N
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            B( LDB, * ), C( LDC, * ), U( LDU, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* ======================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J
 | 
						|
      REAL               BNORM, EPS, REALMN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               CLANGE, SCASUM, SLAMCH
 | 
						|
      EXTERNAL           CLANGE, SCASUM, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CGEMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CMPLX, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      IF( M.LE.0 .OR. N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
      REALMN = REAL( MAX( M, N ) )
 | 
						|
      EPS = SLAMCH( 'Precision' )
 | 
						|
*
 | 
						|
*     Compute norm( B - U * C )
 | 
						|
*
 | 
						|
      DO 10 J = 1, N
 | 
						|
         CALL CCOPY( M, B( 1, J ), 1, WORK, 1 )
 | 
						|
         CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), U, LDU,
 | 
						|
     $               C( 1, J ), 1, CMPLX( ONE ), WORK, 1 )
 | 
						|
         RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm of B.
 | 
						|
*
 | 
						|
      BNORM = CLANGE( '1', M, N, B, LDB, RWORK )
 | 
						|
*
 | 
						|
      IF( BNORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         IF( BNORM.GE.RESID ) THEN
 | 
						|
            RESID = ( RESID / BNORM ) / ( REALMN*EPS )
 | 
						|
         ELSE
 | 
						|
            IF( BNORM.LT.ONE ) THEN
 | 
						|
               RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
 | 
						|
     $                 ( REALMN*EPS )
 | 
						|
            ELSE
 | 
						|
               RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CBDT02
 | 
						|
*
 | 
						|
      END
 |