328 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLA_PORCOND + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_porcond.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_porcond.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_porcond.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL FUNCTION SLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, CMODE, C,
 | 
						|
*                                  INFO, WORK, IWORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            N, LDA, LDAF, INFO, CMODE
 | 
						|
*       REAL               A( LDA, * ), AF( LDAF, * ), WORK( * ),
 | 
						|
*      $                   C( * )
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    SLA_PORCOND Estimates the Skeel condition number of  op(A) * op2(C)
 | 
						|
*>    where op2 is determined by CMODE as follows
 | 
						|
*>    CMODE =  1    op2(C) = C
 | 
						|
*>    CMODE =  0    op2(C) = I
 | 
						|
*>    CMODE = -1    op2(C) = inv(C)
 | 
						|
*>    The Skeel condition number  cond(A) = norminf( |inv(A)||A| )
 | 
						|
*>    is computed by computing scaling factors R such that
 | 
						|
*>    diag(R)*A*op2(C) is row equilibrated and computing the standard
 | 
						|
*>    infinity-norm condition number.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>       = 'U':  Upper triangle of A is stored;
 | 
						|
*>       = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>     The number of linear equations, i.e., the order of the
 | 
						|
*>     matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>     On entry, the N-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>     The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is REAL array, dimension (LDAF,N)
 | 
						|
*>     The triangular factor U or L from the Cholesky factorization
 | 
						|
*>     A = U**T*U or A = L*L**T, as computed by SPOTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAF
 | 
						|
*> \verbatim
 | 
						|
*>          LDAF is INTEGER
 | 
						|
*>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CMODE
 | 
						|
*> \verbatim
 | 
						|
*>          CMODE is INTEGER
 | 
						|
*>     Determines op2(C) in the formula op(A) * op2(C) as follows:
 | 
						|
*>     CMODE =  1    op2(C) = C
 | 
						|
*>     CMODE =  0    op2(C) = I
 | 
						|
*>     CMODE = -1    op2(C) = inv(C)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension (N)
 | 
						|
*>     The vector C in the formula op(A) * op2(C).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>       = 0:  Successful exit.
 | 
						|
*>     i > 0:  The ith argument is invalid.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (3*N).
 | 
						|
*>     Workspace.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N).
 | 
						|
*>     Workspace.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realPOcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL FUNCTION SLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, CMODE, C,
 | 
						|
     $                           INFO, WORK, IWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            N, LDA, LDAF, INFO, CMODE
 | 
						|
      REAL               A( LDA, * ), AF( LDAF, * ), WORK( * ),
 | 
						|
     $                   C( * )
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            KASE, I, J
 | 
						|
      REAL               AINVNM, TMP
 | 
						|
      LOGICAL            UP
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      EXTERNAL           LSAME, ISAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLACN2, SPOTRS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      SLA_PORCOND = 0.0
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLA_PORCOND', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         SLA_PORCOND = 1.0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      UP = .FALSE.
 | 
						|
      IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
 | 
						|
*
 | 
						|
*     Compute the equilibration matrix R such that
 | 
						|
*     inv(R)*A*C has unit 1-norm.
 | 
						|
*
 | 
						|
      IF ( UP ) THEN
 | 
						|
         DO I = 1, N
 | 
						|
            TMP = 0.0
 | 
						|
            IF ( CMODE .EQ. 1 ) THEN
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + ABS( A( J, I ) * C( J ) )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + ABS( A( I, J ) * C( J ) )
 | 
						|
               END DO
 | 
						|
            ELSE IF ( CMODE .EQ. 0 ) THEN
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + ABS( A( J, I ) )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + ABS( A( I, J ) )
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + ABS( A( J ,I ) / C( J ) )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + ABS( A( I, J ) / C( J ) )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
            WORK( 2*N+I ) = TMP
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO I = 1, N
 | 
						|
            TMP = 0.0
 | 
						|
            IF ( CMODE .EQ. 1 ) THEN
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + ABS( A( I, J ) * C( J ) )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + ABS( A( J, I ) * C( J ) )
 | 
						|
               END DO
 | 
						|
            ELSE IF ( CMODE .EQ. 0 ) THEN
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + ABS( A( I, J ) )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + ABS( A( J, I ) )
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + ABS( A( I, J ) / C( J ) )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + ABS( A( J, I ) / C( J ) )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
            WORK( 2*N+I ) = TMP
 | 
						|
         END DO
 | 
						|
      ENDIF
 | 
						|
*
 | 
						|
*     Estimate the norm of inv(op(A)).
 | 
						|
*
 | 
						|
      AINVNM = 0.0
 | 
						|
 | 
						|
      KASE = 0
 | 
						|
   10 CONTINUE
 | 
						|
      CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
 | 
						|
      IF( KASE.NE.0 ) THEN
 | 
						|
         IF( KASE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*           Multiply by R.
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) * WORK( 2*N+I )
 | 
						|
            END DO
 | 
						|
 | 
						|
            IF (UP) THEN
 | 
						|
               CALL SPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
 | 
						|
            ELSE
 | 
						|
               CALL SPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
 | 
						|
            ENDIF
 | 
						|
*
 | 
						|
*           Multiply by inv(C).
 | 
						|
*
 | 
						|
            IF ( CMODE .EQ. 1 ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) / C( I )
 | 
						|
               END DO
 | 
						|
            ELSE IF ( CMODE .EQ. -1 ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) * C( I )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Multiply by inv(C**T).
 | 
						|
*
 | 
						|
            IF ( CMODE .EQ. 1 ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) / C( I )
 | 
						|
               END DO
 | 
						|
            ELSE IF ( CMODE .EQ. -1 ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) * C( I )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
 | 
						|
            IF ( UP ) THEN
 | 
						|
               CALL SPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
 | 
						|
            ELSE
 | 
						|
               CALL SPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
 | 
						|
            ENDIF
 | 
						|
*
 | 
						|
*           Multiply by R.
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) * WORK( 2*N+I )
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM .NE. 0.0 )
 | 
						|
     $   SLA_PORCOND = ( 1.0 / AINVNM )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
      END
 |