217 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLA_PORPVGRW + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_porpvgrw.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_porpvgrw.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_porpvgrw.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL FUNCTION CLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, LDAF, WORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER*1        UPLO
 | 
						|
*       INTEGER            NCOLS, LDA, LDAF
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), AF( LDAF, * )
 | 
						|
*       REAL               WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> 
 | 
						|
*> CLA_PORPVGRW computes the reciprocal pivot growth factor
 | 
						|
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
 | 
						|
*> much less than 1, the stability of the LU factorization of the
 | 
						|
*> (equilibrated) matrix A could be poor. This also means that the
 | 
						|
*> solution X, estimated condition numbers, and error bounds could be
 | 
						|
*> unreliable.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>       = 'U':  Upper triangle of A is stored;
 | 
						|
*>       = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NCOLS
 | 
						|
*> \verbatim
 | 
						|
*>          NCOLS is INTEGER
 | 
						|
*>     The number of columns of the matrix A. NCOLS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>     On entry, the N-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>     The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is COMPLEX array, dimension (LDAF,N)
 | 
						|
*>     The triangular factor U or L from the Cholesky factorization
 | 
						|
*>     A = U**T*U or A = L*L**T, as computed by CPOTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAF
 | 
						|
*> \verbatim
 | 
						|
*>          LDAF is INTEGER
 | 
						|
*>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexPOcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL FUNCTION CLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, LDAF, WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER*1        UPLO
 | 
						|
      INTEGER            NCOLS, LDA, LDAF
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), AF( LDAF, * )
 | 
						|
      REAL               WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      REAL               AMAX, UMAX, RPVGRW
 | 
						|
      LOGICAL            UPPER
 | 
						|
      COMPLEX            ZDUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      EXTERNAL           LSAME, CLASET
 | 
						|
      LOGICAL            LSAME
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, REAL, AIMAG
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function Definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
      UPPER = LSAME( 'Upper', UPLO )
 | 
						|
*
 | 
						|
*     SPOTRF will have factored only the NCOLSxNCOLS leading minor, so
 | 
						|
*     we restrict the growth search to that minor and use only the first
 | 
						|
*     2*NCOLS workspace entries.
 | 
						|
*
 | 
						|
      RPVGRW = 1.0
 | 
						|
      DO I = 1, 2*NCOLS
 | 
						|
         WORK( I ) = 0.0
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     Find the max magnitude entry of each column.
 | 
						|
*
 | 
						|
      IF ( UPPER ) THEN
 | 
						|
         DO J = 1, NCOLS
 | 
						|
            DO I = 1, J
 | 
						|
               WORK( NCOLS+J ) =
 | 
						|
     $              MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO J = 1, NCOLS
 | 
						|
            DO I = J, NCOLS
 | 
						|
               WORK( NCOLS+J ) =
 | 
						|
     $              MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Now find the max magnitude entry of each column of the factor in
 | 
						|
*     AF.  No pivoting, so no permutations.
 | 
						|
*
 | 
						|
      IF ( LSAME( 'Upper', UPLO ) ) THEN
 | 
						|
         DO J = 1, NCOLS
 | 
						|
            DO I = 1, J
 | 
						|
               WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO J = 1, NCOLS
 | 
						|
            DO I = J, NCOLS
 | 
						|
               WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the *inverse* of the max element growth factor.  Dividing
 | 
						|
*     by zero would imply the largest entry of the factor's column is
 | 
						|
*     zero.  Than can happen when either the column of A is zero or
 | 
						|
*     massive pivots made the factor underflow to zero.  Neither counts
 | 
						|
*     as growth in itself, so simply ignore terms with zero
 | 
						|
*     denominators.
 | 
						|
*
 | 
						|
      IF ( LSAME( 'Upper', UPLO ) ) THEN
 | 
						|
         DO I = 1, NCOLS
 | 
						|
            UMAX = WORK( I )
 | 
						|
            AMAX = WORK( NCOLS+I )
 | 
						|
            IF ( UMAX /= 0.0 ) THEN
 | 
						|
               RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO I = 1, NCOLS
 | 
						|
            UMAX = WORK( I )
 | 
						|
            AMAX = WORK( NCOLS+I )
 | 
						|
            IF ( UMAX /= 0.0 ) THEN
 | 
						|
               RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
 | 
						|
      CLA_PORPVGRW = RPVGRW
 | 
						|
      END
 |