499 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			499 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHSEQR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CHSEQR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chseqr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chseqr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chseqr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
 | 
						|
*                          WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
 | 
						|
*       CHARACTER          COMPZ, JOB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    CHSEQR computes the eigenvalues of a Hessenberg matrix H
 | 
						|
*>    and, optionally, the matrices T and Z from the Schur decomposition
 | 
						|
*>    H = Z T Z**H, where T is an upper triangular matrix (the
 | 
						|
*>    Schur form), and Z is the unitary matrix of Schur vectors.
 | 
						|
*>
 | 
						|
*>    Optionally Z may be postmultiplied into an input unitary
 | 
						|
*>    matrix Q so that this routine can give the Schur factorization
 | 
						|
*>    of a matrix A which has been reduced to the Hessenberg form H
 | 
						|
*>    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*T*(QZ)**H.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is CHARACTER*1
 | 
						|
*>           = 'E':  compute eigenvalues only;
 | 
						|
*>           = 'S':  compute eigenvalues and the Schur form T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] COMPZ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPZ is CHARACTER*1
 | 
						|
*>           = 'N':  no Schur vectors are computed;
 | 
						|
*>           = 'I':  Z is initialized to the unit matrix and the matrix Z
 | 
						|
*>                   of Schur vectors of H is returned;
 | 
						|
*>           = 'V':  Z must contain an unitary matrix Q on entry, and
 | 
						|
*>                   the product Q*Z is returned.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           The order of the matrix H.  N .GE. 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>
 | 
						|
*>           It is assumed that H is already upper triangular in rows
 | 
						|
*>           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
 | 
						|
*>           set by a previous call to CGEBAL, and then passed to ZGEHRD
 | 
						|
*>           when the matrix output by CGEBAL is reduced to Hessenberg
 | 
						|
*>           form. Otherwise ILO and IHI should be set to 1 and N
 | 
						|
*>           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
 | 
						|
*>           If N = 0, then ILO = 1 and IHI = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is COMPLEX array, dimension (LDH,N)
 | 
						|
*>           On entry, the upper Hessenberg matrix H.
 | 
						|
*>           On exit, if INFO = 0 and JOB = 'S', H contains the upper
 | 
						|
*>           triangular matrix T from the Schur decomposition (the
 | 
						|
*>           Schur form). If INFO = 0 and JOB = 'E', the contents of
 | 
						|
*>           H are unspecified on exit.  (The output value of H when
 | 
						|
*>           INFO.GT.0 is given under the description of INFO below.)
 | 
						|
*>
 | 
						|
*>           Unlike earlier versions of CHSEQR, this subroutine may
 | 
						|
*>           explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
 | 
						|
*>           or j = IHI+1, IHI+2, ... N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is INTEGER
 | 
						|
*>           The leading dimension of the array H. LDH .GE. max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is COMPLEX array, dimension (N)
 | 
						|
*>           The computed eigenvalues. If JOB = 'S', the eigenvalues are
 | 
						|
*>           stored in the same order as on the diagonal of the Schur
 | 
						|
*>           form returned in H, with W(i) = H(i,i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX array, dimension (LDZ,N)
 | 
						|
*>           If COMPZ = 'N', Z is not referenced.
 | 
						|
*>           If COMPZ = 'I', on entry Z need not be set and on exit,
 | 
						|
*>           if INFO = 0, Z contains the unitary matrix Z of the Schur
 | 
						|
*>           vectors of H.  If COMPZ = 'V', on entry Z must contain an
 | 
						|
*>           N-by-N matrix Q, which is assumed to be equal to the unit
 | 
						|
*>           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
 | 
						|
*>           if INFO = 0, Z contains Q*Z.
 | 
						|
*>           Normally Q is the unitary matrix generated by CUNGHR
 | 
						|
*>           after the call to CGEHRD which formed the Hessenberg matrix
 | 
						|
*>           H. (The output value of Z when INFO.GT.0 is given under
 | 
						|
*>           the description of INFO below.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>           The leading dimension of the array Z.  if COMPZ = 'I' or
 | 
						|
*>           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (LWORK)
 | 
						|
*>           On exit, if INFO = 0, WORK(1) returns an estimate of
 | 
						|
*>           the optimal value for LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>           The dimension of the array WORK.  LWORK .GE. max(1,N)
 | 
						|
*>           is sufficient and delivers very good and sometimes
 | 
						|
*>           optimal performance.  However, LWORK as large as 11*N
 | 
						|
*>           may be required for optimal performance.  A workspace
 | 
						|
*>           query is recommended to determine the optimal workspace
 | 
						|
*>           size.
 | 
						|
*>
 | 
						|
*>           If LWORK = -1, then CHSEQR does a workspace query.
 | 
						|
*>           In this case, CHSEQR checks the input parameters and
 | 
						|
*>           estimates the optimal workspace size for the given
 | 
						|
*>           values of N, ILO and IHI.  The estimate is returned
 | 
						|
*>           in WORK(1).  No error message related to LWORK is
 | 
						|
*>           issued by XERBLA.  Neither H nor Z are accessed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>             =  0:  successful exit
 | 
						|
*>           .LT. 0:  if INFO = -i, the i-th argument had an illegal
 | 
						|
*>                    value
 | 
						|
*>           .GT. 0:  if INFO = i, CHSEQR failed to compute all of
 | 
						|
*>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
 | 
						|
*>                and WI contain those eigenvalues which have been
 | 
						|
*>                successfully computed.  (Failures are rare.)
 | 
						|
*>
 | 
						|
*>                If INFO .GT. 0 and JOB = 'E', then on exit, the
 | 
						|
*>                remaining unconverged eigenvalues are the eigen-
 | 
						|
*>                values of the upper Hessenberg matrix rows and
 | 
						|
*>                columns ILO through INFO of the final, output
 | 
						|
*>                value of H.
 | 
						|
*>
 | 
						|
*>                If INFO .GT. 0 and JOB   = 'S', then on exit
 | 
						|
*>
 | 
						|
*>           (*)  (initial value of H)*U  = U*(final value of H)
 | 
						|
*>
 | 
						|
*>                where U is a unitary matrix.  The final
 | 
						|
*>                value of  H is upper Hessenberg and triangular in
 | 
						|
*>                rows and columns INFO+1 through IHI.
 | 
						|
*>
 | 
						|
*>                If INFO .GT. 0 and COMPZ = 'V', then on exit
 | 
						|
*>
 | 
						|
*>                  (final value of Z)  =  (initial value of Z)*U
 | 
						|
*>
 | 
						|
*>                where U is the unitary matrix in (*) (regard-
 | 
						|
*>                less of the value of JOB.)
 | 
						|
*>
 | 
						|
*>                If INFO .GT. 0 and COMPZ = 'I', then on exit
 | 
						|
*>                      (final value of Z)  = U
 | 
						|
*>                where U is the unitary matrix in (*) (regard-
 | 
						|
*>                less of the value of JOB.)
 | 
						|
*>
 | 
						|
*>                If INFO .GT. 0 and COMPZ = 'N', then Z is not
 | 
						|
*>                accessed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>       Karen Braman and Ralph Byers, Department of Mathematics,
 | 
						|
*>       University of Kansas, USA
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>             Default values supplied by
 | 
						|
*>             ILAENV(ISPEC,'CHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
 | 
						|
*>             It is suggested that these defaults be adjusted in order
 | 
						|
*>             to attain best performance in each particular
 | 
						|
*>             computational environment.
 | 
						|
*>
 | 
						|
*>            ISPEC=12: The CLAHQR vs CLAQR0 crossover point.
 | 
						|
*>                      Default: 75. (Must be at least 11.)
 | 
						|
*>
 | 
						|
*>            ISPEC=13: Recommended deflation window size.
 | 
						|
*>                      This depends on ILO, IHI and NS.  NS is the
 | 
						|
*>                      number of simultaneous shifts returned
 | 
						|
*>                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
 | 
						|
*>                      The default for (IHI-ILO+1).LE.500 is NS.
 | 
						|
*>                      The default for (IHI-ILO+1).GT.500 is 3*NS/2.
 | 
						|
*>
 | 
						|
*>            ISPEC=14: Nibble crossover point. (See IPARMQ for
 | 
						|
*>                      details.)  Default: 14% of deflation window
 | 
						|
*>                      size.
 | 
						|
*>
 | 
						|
*>            ISPEC=15: Number of simultaneous shifts in a multishift
 | 
						|
*>                      QR iteration.
 | 
						|
*>
 | 
						|
*>                      If IHI-ILO+1 is ...
 | 
						|
*>
 | 
						|
*>                      greater than      ...but less    ... the
 | 
						|
*>                      or equal to ...      than        default is
 | 
						|
*>
 | 
						|
*>                           1               30          NS =   2(+)
 | 
						|
*>                          30               60          NS =   4(+)
 | 
						|
*>                          60              150          NS =  10(+)
 | 
						|
*>                         150              590          NS =  **
 | 
						|
*>                         590             3000          NS =  64
 | 
						|
*>                        3000             6000          NS = 128
 | 
						|
*>                        6000             infinity      NS = 256
 | 
						|
*>
 | 
						|
*>                  (+)  By default some or all matrices of this order
 | 
						|
*>                       are passed to the implicit double shift routine
 | 
						|
*>                       CLAHQR and this parameter is ignored.  See
 | 
						|
*>                       ISPEC=12 above and comments in IPARMQ for
 | 
						|
*>                       details.
 | 
						|
*>
 | 
						|
*>                 (**)  The asterisks (**) indicate an ad-hoc
 | 
						|
*>                       function of N increasing from 10 to 64.
 | 
						|
*>
 | 
						|
*>            ISPEC=16: Select structured matrix multiply.
 | 
						|
*>                      If the number of simultaneous shifts (specified
 | 
						|
*>                      by ISPEC=15) is less than 14, then the default
 | 
						|
*>                      for ISPEC=16 is 0.  Otherwise the default for
 | 
						|
*>                      ISPEC=16 is 2.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | 
						|
*>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
 | 
						|
*>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
 | 
						|
*>       929--947, 2002.
 | 
						|
*> \n
 | 
						|
*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | 
						|
*>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
 | 
						|
*>       of Matrix Analysis, volume 23, pages 948--973, 2002.
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
 | 
						|
     $                   WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
 | 
						|
      CHARACTER          COMPZ, JOB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
*
 | 
						|
*     ==== Matrices of order NTINY or smaller must be processed by
 | 
						|
*     .    CLAHQR because of insufficient subdiagonal scratch space.
 | 
						|
*     .    (This is a hard limit.) ====
 | 
						|
      INTEGER            NTINY
 | 
						|
      PARAMETER          ( NTINY = 11 )
 | 
						|
*
 | 
						|
*     ==== NL allocates some local workspace to help small matrices
 | 
						|
*     .    through a rare CLAHQR failure.  NL .GT. NTINY = 11 is
 | 
						|
*     .    required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
 | 
						|
*     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
 | 
						|
*     .    allows up to six simultaneous shifts and a 16-by-16
 | 
						|
*     .    deflation window.  ====
 | 
						|
      INTEGER            NL
 | 
						|
      PARAMETER          ( NL = 49 )
 | 
						|
      COMPLEX            ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = ( 0.0e0, 0.0e0 ),
 | 
						|
     $                   ONE = ( 1.0e0, 0.0e0 ) )
 | 
						|
      REAL               RZERO
 | 
						|
      PARAMETER          ( RZERO = 0.0e0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      COMPLEX            HL( NL, NL ), WORKL( NL )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            KBOT, NMIN
 | 
						|
      LOGICAL            INITZ, LQUERY, WANTT, WANTZ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           ILAENV, LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CLACPY, CLAHQR, CLAQR0, CLASET, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CMPLX, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     ==== Decode and check the input parameters. ====
 | 
						|
*
 | 
						|
      WANTT = LSAME( JOB, 'S' )
 | 
						|
      INITZ = LSAME( COMPZ, 'I' )
 | 
						|
      WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
 | 
						|
      WORK( 1 ) = CMPLX( REAL( MAX( 1, N ) ), RZERO )
 | 
						|
      LQUERY = LWORK.EQ.-1
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -12
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
*
 | 
						|
*        ==== Quick return in case of invalid argument. ====
 | 
						|
*
 | 
						|
         CALL XERBLA( 'CHSEQR', -INFO )
 | 
						|
         RETURN
 | 
						|
*
 | 
						|
      ELSE IF( N.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        ==== Quick return in case N = 0; nothing to do. ====
 | 
						|
*
 | 
						|
         RETURN
 | 
						|
*
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
*
 | 
						|
*        ==== Quick return in case of a workspace query ====
 | 
						|
*
 | 
						|
         CALL CLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI, Z,
 | 
						|
     $                LDZ, WORK, LWORK, INFO )
 | 
						|
*        ==== Ensure reported workspace size is backward-compatible with
 | 
						|
*        .    previous LAPACK versions. ====
 | 
						|
         WORK( 1 ) = CMPLX( MAX( REAL( WORK( 1 ) ), REAL( MAX( 1,
 | 
						|
     $               N ) ) ), RZERO )
 | 
						|
         RETURN
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        ==== copy eigenvalues isolated by CGEBAL ====
 | 
						|
*
 | 
						|
         IF( ILO.GT.1 )
 | 
						|
     $      CALL CCOPY( ILO-1, H, LDH+1, W, 1 )
 | 
						|
         IF( IHI.LT.N )
 | 
						|
     $      CALL CCOPY( N-IHI, H( IHI+1, IHI+1 ), LDH+1, W( IHI+1 ), 1 )
 | 
						|
*
 | 
						|
*        ==== Initialize Z, if requested ====
 | 
						|
*
 | 
						|
         IF( INITZ )
 | 
						|
     $      CALL CLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
 | 
						|
*
 | 
						|
*        ==== Quick return if possible ====
 | 
						|
*
 | 
						|
         IF( ILO.EQ.IHI ) THEN
 | 
						|
            W( ILO ) = H( ILO, ILO )
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        ==== CLAHQR/CLAQR0 crossover point ====
 | 
						|
*
 | 
						|
         NMIN = ILAENV( 12, 'CHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
 | 
						|
     $          ILO, IHI, LWORK )
 | 
						|
         NMIN = MAX( NTINY, NMIN )
 | 
						|
*
 | 
						|
*        ==== CLAQR0 for big matrices; CLAHQR for small ones ====
 | 
						|
*
 | 
						|
         IF( N.GT.NMIN ) THEN
 | 
						|
            CALL CLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
 | 
						|
     $                   Z, LDZ, WORK, LWORK, INFO )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           ==== Small matrix ====
 | 
						|
*
 | 
						|
            CALL CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
 | 
						|
     $                   Z, LDZ, INFO )
 | 
						|
*
 | 
						|
            IF( INFO.GT.0 ) THEN
 | 
						|
*
 | 
						|
*              ==== A rare CLAHQR failure!  CLAQR0 sometimes succeeds
 | 
						|
*              .    when CLAHQR fails. ====
 | 
						|
*
 | 
						|
               KBOT = INFO
 | 
						|
*
 | 
						|
               IF( N.GE.NL ) THEN
 | 
						|
*
 | 
						|
*                 ==== Larger matrices have enough subdiagonal scratch
 | 
						|
*                 .    space to call CLAQR0 directly. ====
 | 
						|
*
 | 
						|
                  CALL CLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, W,
 | 
						|
     $                         ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 ==== Tiny matrices don't have enough subdiagonal
 | 
						|
*                 .    scratch space to benefit from CLAQR0.  Hence,
 | 
						|
*                 .    tiny matrices must be copied into a larger
 | 
						|
*                 .    array before calling CLAQR0. ====
 | 
						|
*
 | 
						|
                  CALL CLACPY( 'A', N, N, H, LDH, HL, NL )
 | 
						|
                  HL( N+1, N ) = ZERO
 | 
						|
                  CALL CLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
 | 
						|
     $                         NL )
 | 
						|
                  CALL CLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, W,
 | 
						|
     $                         ILO, IHI, Z, LDZ, WORKL, NL, INFO )
 | 
						|
                  IF( WANTT .OR. INFO.NE.0 )
 | 
						|
     $               CALL CLACPY( 'A', N, N, HL, NL, H, LDH )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        ==== Clear out the trash, if necessary. ====
 | 
						|
*
 | 
						|
         IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
 | 
						|
     $      CALL CLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
 | 
						|
*
 | 
						|
*        ==== Ensure reported workspace size is backward-compatible with
 | 
						|
*        .    previous LAPACK versions. ====
 | 
						|
*
 | 
						|
         WORK( 1 ) = CMPLX( MAX( REAL( MAX( 1, N ) ),
 | 
						|
     $               REAL( WORK( 1 ) ) ), RZERO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ==== End of CHSEQR ====
 | 
						|
*
 | 
						|
      END
 |