314 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			314 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGEEQU
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGEEQU + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeequ.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeequ.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeequ.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
 | 
						|
*                          INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       DOUBLE PRECISION   AMAX, COLCND, ROWCND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   C( * ), R( * )
 | 
						|
*       COMPLEX*16         A( LDA, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGEEQU computes row and column scalings intended to equilibrate an
 | 
						|
*> M-by-N matrix A and reduce its condition number.  R returns the row
 | 
						|
*> scale factors and C the column scale factors, chosen to try to make
 | 
						|
*> the largest element in each row and column of the matrix B with
 | 
						|
*> elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
 | 
						|
*>
 | 
						|
*> R(i) and C(j) are restricted to be between SMLNUM = smallest safe
 | 
						|
*> number and BIGNUM = largest safe number.  Use of these scaling
 | 
						|
*> factors is not guaranteed to reduce the condition number of A but
 | 
						|
*> works well in practice.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The M-by-N matrix whose equilibration factors are
 | 
						|
*>          to be computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] R
 | 
						|
*> \verbatim
 | 
						|
*>          R is DOUBLE PRECISION array, dimension (M)
 | 
						|
*>          If INFO = 0 or INFO > M, R contains the row scale factors
 | 
						|
*>          for A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          If INFO = 0,  C contains the column scale factors for A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ROWCND
 | 
						|
*> \verbatim
 | 
						|
*>          ROWCND is DOUBLE PRECISION
 | 
						|
*>          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
 | 
						|
*>          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and
 | 
						|
*>          AMAX is neither too large nor too small, it is not worth
 | 
						|
*>          scaling by R.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] COLCND
 | 
						|
*> \verbatim
 | 
						|
*>          COLCND is DOUBLE PRECISION
 | 
						|
*>          If INFO = 0, COLCND contains the ratio of the smallest
 | 
						|
*>          C(i) to the largest C(i).  If COLCND >= 0.1, it is not
 | 
						|
*>          worth scaling by C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AMAX
 | 
						|
*> \verbatim
 | 
						|
*>          AMAX is DOUBLE PRECISION
 | 
						|
*>          Absolute value of largest matrix element.  If AMAX is very
 | 
						|
*>          close to overflow or very close to underflow, the matrix
 | 
						|
*>          should be scaled.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i,  and i is
 | 
						|
*>                <= M:  the i-th row of A is exactly zero
 | 
						|
*>                >  M:  the (i-M)-th column of A is exactly zero
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16GEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
      DOUBLE PRECISION   AMAX, COLCND, ROWCND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   C( * ), R( * )
 | 
						|
      COMPLEX*16         A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   BIGNUM, RCMAX, RCMIN, SMLNUM
 | 
						|
      COMPLEX*16         ZDUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGEEQU', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | 
						|
         ROWCND = ONE
 | 
						|
         COLCND = ONE
 | 
						|
         AMAX = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants.
 | 
						|
*
 | 
						|
      SMLNUM = DLAMCH( 'S' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Compute row scale factors.
 | 
						|
*
 | 
						|
      DO 10 I = 1, M
 | 
						|
         R( I ) = ZERO
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Find the maximum element in each row.
 | 
						|
*
 | 
						|
      DO 30 J = 1, N
 | 
						|
         DO 20 I = 1, M
 | 
						|
            R( I ) = MAX( R( I ), CABS1( A( I, J ) ) )
 | 
						|
   20    CONTINUE
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Find the maximum and minimum scale factors.
 | 
						|
*
 | 
						|
      RCMIN = BIGNUM
 | 
						|
      RCMAX = ZERO
 | 
						|
      DO 40 I = 1, M
 | 
						|
         RCMAX = MAX( RCMAX, R( I ) )
 | 
						|
         RCMIN = MIN( RCMIN, R( I ) )
 | 
						|
   40 CONTINUE
 | 
						|
      AMAX = RCMAX
 | 
						|
*
 | 
						|
      IF( RCMIN.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Find the first zero scale factor and return an error code.
 | 
						|
*
 | 
						|
         DO 50 I = 1, M
 | 
						|
            IF( R( I ).EQ.ZERO ) THEN
 | 
						|
               INFO = I
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Invert the scale factors.
 | 
						|
*
 | 
						|
         DO 60 I = 1, M
 | 
						|
            R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        Compute ROWCND = min(R(I)) / max(R(I))
 | 
						|
*
 | 
						|
         ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute column scale factors
 | 
						|
*
 | 
						|
      DO 70 J = 1, N
 | 
						|
         C( J ) = ZERO
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
*     Find the maximum element in each column,
 | 
						|
*     assuming the row scaling computed above.
 | 
						|
*
 | 
						|
      DO 90 J = 1, N
 | 
						|
         DO 80 I = 1, M
 | 
						|
            C( J ) = MAX( C( J ), CABS1( A( I, J ) )*R( I ) )
 | 
						|
   80    CONTINUE
 | 
						|
   90 CONTINUE
 | 
						|
*
 | 
						|
*     Find the maximum and minimum scale factors.
 | 
						|
*
 | 
						|
      RCMIN = BIGNUM
 | 
						|
      RCMAX = ZERO
 | 
						|
      DO 100 J = 1, N
 | 
						|
         RCMIN = MIN( RCMIN, C( J ) )
 | 
						|
         RCMAX = MAX( RCMAX, C( J ) )
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
      IF( RCMIN.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Find the first zero scale factor and return an error code.
 | 
						|
*
 | 
						|
         DO 110 J = 1, N
 | 
						|
            IF( C( J ).EQ.ZERO ) THEN
 | 
						|
               INFO = M + J
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
  110    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Invert the scale factors.
 | 
						|
*
 | 
						|
         DO 120 J = 1, N
 | 
						|
            C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
 | 
						|
  120    CONTINUE
 | 
						|
*
 | 
						|
*        Compute COLCND = min(C(J)) / max(C(J))
 | 
						|
*
 | 
						|
         COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGEEQU
 | 
						|
*
 | 
						|
      END
 |