316 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			316 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLASD0 computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e. Used by sbdsdc.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLASD0 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd0.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd0.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd0.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
 | 
						|
*                          WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> Using a divide and conquer approach, DLASD0 computes the singular
 | 
						|
*> value decomposition (SVD) of a real upper bidiagonal N-by-M
 | 
						|
*> matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
 | 
						|
*> The algorithm computes orthogonal matrices U and VT such that
 | 
						|
*> B = U * S * VT. The singular values S are overwritten on D.
 | 
						|
*>
 | 
						|
*> A related subroutine, DLASDA, computes only the singular values,
 | 
						|
*> and optionally, the singular vectors in compact form.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>         On entry, the row dimension of the upper bidiagonal matrix.
 | 
						|
*>         This is also the dimension of the main diagonal array D.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SQRE
 | 
						|
*> \verbatim
 | 
						|
*>          SQRE is INTEGER
 | 
						|
*>         Specifies the column dimension of the bidiagonal matrix.
 | 
						|
*>         = 0: The bidiagonal matrix has column dimension M = N;
 | 
						|
*>         = 1: The bidiagonal matrix has column dimension M = N+1;
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>         On entry D contains the main diagonal of the bidiagonal
 | 
						|
*>         matrix.
 | 
						|
*>         On exit D, if INFO = 0, contains its singular values.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (M-1)
 | 
						|
*>         Contains the subdiagonal entries of the bidiagonal matrix.
 | 
						|
*>         On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is DOUBLE PRECISION array, dimension at least (LDQ, N)
 | 
						|
*>         On exit, U contains the left singular vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>         On entry, leading dimension of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VT
 | 
						|
*> \verbatim
 | 
						|
*>          VT is DOUBLE PRECISION array, dimension at least (LDVT, M)
 | 
						|
*>         On exit, VT**T contains the right singular vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVT
 | 
						|
*> \verbatim
 | 
						|
*>          LDVT is INTEGER
 | 
						|
*>         On entry, leading dimension of VT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SMLSIZ
 | 
						|
*> \verbatim
 | 
						|
*>          SMLSIZ is INTEGER
 | 
						|
*>         On entry, maximum size of the subproblems at the
 | 
						|
*>         bottom of the computation tree.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER work array.
 | 
						|
*>         Dimension must be at least (8 * N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION work array.
 | 
						|
*>         Dimension must be at least (3 * M**2 + 2 * M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = 1, a singular value did not converge
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ming Gu and Huan Ren, Computer Science Division, University of
 | 
						|
*>     California at Berkeley, USA
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
 | 
						|
     $                   WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
 | 
						|
     $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
 | 
						|
     $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
 | 
						|
      DOUBLE PRECISION   ALPHA, BETA
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLASD1, DLASDQ, DLASDT, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      M = N + SQRE
 | 
						|
*
 | 
						|
      IF( LDU.LT.N ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDVT.LT.M ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( SMLSIZ.LT.3 ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DLASD0', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If the input matrix is too small, call DLASDQ to find the SVD.
 | 
						|
*
 | 
						|
      IF( N.LE.SMLSIZ ) THEN
 | 
						|
         CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
 | 
						|
     $                LDU, WORK, INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Set up the computation tree.
 | 
						|
*
 | 
						|
      INODE = 1
 | 
						|
      NDIML = INODE + N
 | 
						|
      NDIMR = NDIML + N
 | 
						|
      IDXQ = NDIMR + N
 | 
						|
      IWK = IDXQ + N
 | 
						|
      CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
 | 
						|
     $             IWORK( NDIMR ), SMLSIZ )
 | 
						|
*
 | 
						|
*     For the nodes on bottom level of the tree, solve
 | 
						|
*     their subproblems by DLASDQ.
 | 
						|
*
 | 
						|
      NDB1 = ( ND+1 ) / 2
 | 
						|
      NCC = 0
 | 
						|
      DO 30 I = NDB1, ND
 | 
						|
*
 | 
						|
*     IC : center row of each node
 | 
						|
*     NL : number of rows of left  subproblem
 | 
						|
*     NR : number of rows of right subproblem
 | 
						|
*     NLF: starting row of the left   subproblem
 | 
						|
*     NRF: starting row of the right  subproblem
 | 
						|
*
 | 
						|
         I1 = I - 1
 | 
						|
         IC = IWORK( INODE+I1 )
 | 
						|
         NL = IWORK( NDIML+I1 )
 | 
						|
         NLP1 = NL + 1
 | 
						|
         NR = IWORK( NDIMR+I1 )
 | 
						|
         NRP1 = NR + 1
 | 
						|
         NLF = IC - NL
 | 
						|
         NRF = IC + 1
 | 
						|
         SQREI = 1
 | 
						|
         CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
 | 
						|
     $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
 | 
						|
     $                U( NLF, NLF ), LDU, WORK, INFO )
 | 
						|
         IF( INFO.NE.0 ) THEN
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         ITEMP = IDXQ + NLF - 2
 | 
						|
         DO 10 J = 1, NL
 | 
						|
            IWORK( ITEMP+J ) = J
 | 
						|
   10    CONTINUE
 | 
						|
         IF( I.EQ.ND ) THEN
 | 
						|
            SQREI = SQRE
 | 
						|
         ELSE
 | 
						|
            SQREI = 1
 | 
						|
         END IF
 | 
						|
         NRP1 = NR + SQREI
 | 
						|
         CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
 | 
						|
     $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
 | 
						|
     $                U( NRF, NRF ), LDU, WORK, INFO )
 | 
						|
         IF( INFO.NE.0 ) THEN
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         ITEMP = IDXQ + IC
 | 
						|
         DO 20 J = 1, NR
 | 
						|
            IWORK( ITEMP+J-1 ) = J
 | 
						|
   20    CONTINUE
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Now conquer each subproblem bottom-up.
 | 
						|
*
 | 
						|
      DO 50 LVL = NLVL, 1, -1
 | 
						|
*
 | 
						|
*        Find the first node LF and last node LL on the
 | 
						|
*        current level LVL.
 | 
						|
*
 | 
						|
         IF( LVL.EQ.1 ) THEN
 | 
						|
            LF = 1
 | 
						|
            LL = 1
 | 
						|
         ELSE
 | 
						|
            LF = 2**( LVL-1 )
 | 
						|
            LL = 2*LF - 1
 | 
						|
         END IF
 | 
						|
         DO 40 I = LF, LL
 | 
						|
            IM1 = I - 1
 | 
						|
            IC = IWORK( INODE+IM1 )
 | 
						|
            NL = IWORK( NDIML+IM1 )
 | 
						|
            NR = IWORK( NDIMR+IM1 )
 | 
						|
            NLF = IC - NL
 | 
						|
            IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
 | 
						|
               SQREI = SQRE
 | 
						|
            ELSE
 | 
						|
               SQREI = 1
 | 
						|
            END IF
 | 
						|
            IDXQC = IDXQ + NLF - 1
 | 
						|
            ALPHA = D( IC )
 | 
						|
            BETA = E( IC )
 | 
						|
            CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
 | 
						|
     $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
 | 
						|
     $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
 | 
						|
            IF( INFO.NE.0 ) THEN
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
   40    CONTINUE
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLASD0
 | 
						|
*
 | 
						|
      END
 |