262 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSPR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP)
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL ALPHA
 | 
						|
*       INTEGER INCX,N
 | 
						|
*       CHARACTER UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL AP(*),X(*)
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSPR    performs the symmetric rank 1 operation
 | 
						|
*>
 | 
						|
*>    A := alpha*x*x**T + A,
 | 
						|
*>
 | 
						|
*> where alpha is a real scalar, x is an n element vector and A is an
 | 
						|
*> n by n symmetric matrix, supplied in packed form.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the upper or lower
 | 
						|
*>           triangular part of the matrix A is supplied in the packed
 | 
						|
*>           array AP as follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   The upper triangular part of A is
 | 
						|
*>                                  supplied in AP.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   The lower triangular part of A is
 | 
						|
*>                                  supplied in AP.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the order of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is REAL
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array of dimension at least
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | 
						|
*>           Before entry, the incremented array X must contain the n
 | 
						|
*>           element vector x.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is REAL array of DIMENSION at least
 | 
						|
*>           ( ( n*( n + 1 ) )/2 ).
 | 
						|
*>           Before entry with  UPLO = 'U' or 'u', the array AP must
 | 
						|
*>           contain the upper triangular part of the symmetric matrix
 | 
						|
*>           packed sequentially, column by column, so that AP( 1 )
 | 
						|
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 | 
						|
*>           and a( 2, 2 ) respectively, and so on. On exit, the array
 | 
						|
*>           AP is overwritten by the upper triangular part of the
 | 
						|
*>           updated matrix.
 | 
						|
*>           Before entry with UPLO = 'L' or 'l', the array AP must
 | 
						|
*>           contain the lower triangular part of the symmetric matrix
 | 
						|
*>           packed sequentially, column by column, so that AP( 1 )
 | 
						|
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 | 
						|
*>           and a( 3, 1 ) respectively, and so on. On exit, the array
 | 
						|
*>           AP is overwritten by the lower triangular part of the
 | 
						|
*>           updated matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_blas_level2
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 2 Blas routine.
 | 
						|
*>
 | 
						|
*>  -- Written on 22-October-1986.
 | 
						|
*>     Jack Dongarra, Argonne National Lab.
 | 
						|
*>     Jeremy Du Croz, Nag Central Office.
 | 
						|
*>     Sven Hammarling, Nag Central Office.
 | 
						|
*>     Richard Hanson, Sandia National Labs.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level2 routine (version 3.4.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL ALPHA
 | 
						|
      INTEGER INCX,N
 | 
						|
      CHARACTER UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL AP(*),X(*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL ZERO
 | 
						|
      PARAMETER (ZERO=0.0E+0)
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL TEMP
 | 
						|
      INTEGER I,INFO,IX,J,JX,K,KK,KX
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF (INCX.EQ.0) THEN
 | 
						|
          INFO = 5
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('SSPR  ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
 | 
						|
*
 | 
						|
*     Set the start point in X if the increment is not unity.
 | 
						|
*
 | 
						|
      IF (INCX.LE.0) THEN
 | 
						|
          KX = 1 - (N-1)*INCX
 | 
						|
      ELSE IF (INCX.NE.1) THEN
 | 
						|
          KX = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of the array AP
 | 
						|
*     are accessed sequentially with one pass through AP.
 | 
						|
*
 | 
						|
      KK = 1
 | 
						|
      IF (LSAME(UPLO,'U')) THEN
 | 
						|
*
 | 
						|
*        Form  A  when upper triangle is stored in AP.
 | 
						|
*
 | 
						|
          IF (INCX.EQ.1) THEN
 | 
						|
              DO 20 J = 1,N
 | 
						|
                  IF (X(J).NE.ZERO) THEN
 | 
						|
                      TEMP = ALPHA*X(J)
 | 
						|
                      K = KK
 | 
						|
                      DO 10 I = 1,J
 | 
						|
                          AP(K) = AP(K) + X(I)*TEMP
 | 
						|
                          K = K + 1
 | 
						|
   10                 CONTINUE
 | 
						|
                  END IF
 | 
						|
                  KK = KK + J
 | 
						|
   20         CONTINUE
 | 
						|
          ELSE
 | 
						|
              JX = KX
 | 
						|
              DO 40 J = 1,N
 | 
						|
                  IF (X(JX).NE.ZERO) THEN
 | 
						|
                      TEMP = ALPHA*X(JX)
 | 
						|
                      IX = KX
 | 
						|
                      DO 30 K = KK,KK + J - 1
 | 
						|
                          AP(K) = AP(K) + X(IX)*TEMP
 | 
						|
                          IX = IX + INCX
 | 
						|
   30                 CONTINUE
 | 
						|
                  END IF
 | 
						|
                  JX = JX + INCX
 | 
						|
                  KK = KK + J
 | 
						|
   40         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  A  when lower triangle is stored in AP.
 | 
						|
*
 | 
						|
          IF (INCX.EQ.1) THEN
 | 
						|
              DO 60 J = 1,N
 | 
						|
                  IF (X(J).NE.ZERO) THEN
 | 
						|
                      TEMP = ALPHA*X(J)
 | 
						|
                      K = KK
 | 
						|
                      DO 50 I = J,N
 | 
						|
                          AP(K) = AP(K) + X(I)*TEMP
 | 
						|
                          K = K + 1
 | 
						|
   50                 CONTINUE
 | 
						|
                  END IF
 | 
						|
                  KK = KK + N - J + 1
 | 
						|
   60         CONTINUE
 | 
						|
          ELSE
 | 
						|
              JX = KX
 | 
						|
              DO 80 J = 1,N
 | 
						|
                  IF (X(JX).NE.ZERO) THEN
 | 
						|
                      TEMP = ALPHA*X(JX)
 | 
						|
                      IX = JX
 | 
						|
                      DO 70 K = KK,KK + N - J
 | 
						|
                          AP(K) = AP(K) + X(IX)*TEMP
 | 
						|
                          IX = IX + INCX
 | 
						|
   70                 CONTINUE
 | 
						|
                  END IF
 | 
						|
                  JX = JX + INCX
 | 
						|
                  KK = KK + N - J + 1
 | 
						|
   80         CONTINUE
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSPR  .
 | 
						|
*
 | 
						|
      END
 |