487 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			487 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAR1V + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlar1v.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlar1v.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlar1v.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
 | 
						|
*                  PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
 | 
						|
*                  R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            WANTNC
 | 
						|
*       INTEGER   B1, BN, N, NEGCNT, R
 | 
						|
*       DOUBLE PRECISION   GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
 | 
						|
*      $                   RQCORR, ZTZ
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISUPPZ( * )
 | 
						|
*       DOUBLE PRECISION   D( * ), L( * ), LD( * ), LLD( * ),
 | 
						|
*      $                  WORK( * )
 | 
						|
*       DOUBLE PRECISION Z( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLAR1V computes the (scaled) r-th column of the inverse of
 | 
						|
*> the sumbmatrix in rows B1 through BN of the tridiagonal matrix
 | 
						|
*> L D L**T - sigma I. When sigma is close to an eigenvalue, the
 | 
						|
*> computed vector is an accurate eigenvector. Usually, r corresponds
 | 
						|
*> to the index where the eigenvector is largest in magnitude.
 | 
						|
*> The following steps accomplish this computation :
 | 
						|
*> (a) Stationary qd transform,  L D L**T - sigma I = L(+) D(+) L(+)**T,
 | 
						|
*> (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
 | 
						|
*> (c) Computation of the diagonal elements of the inverse of
 | 
						|
*>     L D L**T - sigma I by combining the above transforms, and choosing
 | 
						|
*>     r as the index where the diagonal of the inverse is (one of the)
 | 
						|
*>     largest in magnitude.
 | 
						|
*> (d) Computation of the (scaled) r-th column of the inverse using the
 | 
						|
*>     twisted factorization obtained by combining the top part of the
 | 
						|
*>     the stationary and the bottom part of the progressive transform.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           The order of the matrix L D L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B1
 | 
						|
*> \verbatim
 | 
						|
*>          B1 is INTEGER
 | 
						|
*>           First index of the submatrix of L D L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BN
 | 
						|
*> \verbatim
 | 
						|
*>          BN is INTEGER
 | 
						|
*>           Last index of the submatrix of L D L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LAMBDA
 | 
						|
*> \verbatim
 | 
						|
*>          LAMBDA is DOUBLE PRECISION
 | 
						|
*>           The shift. In order to compute an accurate eigenvector,
 | 
						|
*>           LAMBDA should be a good approximation to an eigenvalue
 | 
						|
*>           of L D L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>           The (n-1) subdiagonal elements of the unit bidiagonal matrix
 | 
						|
*>           L, in elements 1 to N-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>           The n diagonal elements of the diagonal matrix D.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LD
 | 
						|
*> \verbatim
 | 
						|
*>          LD is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>           The n-1 elements L(i)*D(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LLD
 | 
						|
*> \verbatim
 | 
						|
*>          LLD is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>           The n-1 elements L(i)*L(i)*D(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PIVMIN
 | 
						|
*> \verbatim
 | 
						|
*>          PIVMIN is DOUBLE PRECISION
 | 
						|
*>           The minimum pivot in the Sturm sequence.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GAPTOL
 | 
						|
*> \verbatim
 | 
						|
*>          GAPTOL is DOUBLE PRECISION
 | 
						|
*>           Tolerance that indicates when eigenvector entries are negligible
 | 
						|
*>           w.r.t. their contribution to the residual.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>           On input, all entries of Z must be set to 0.
 | 
						|
*>           On output, Z contains the (scaled) r-th column of the
 | 
						|
*>           inverse. The scaling is such that Z(R) equals 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WANTNC
 | 
						|
*> \verbatim
 | 
						|
*>          WANTNC is LOGICAL
 | 
						|
*>           Specifies whether NEGCNT has to be computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] NEGCNT
 | 
						|
*> \verbatim
 | 
						|
*>          NEGCNT is INTEGER
 | 
						|
*>           If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
 | 
						|
*>           in the  matrix factorization L D L**T, and NEGCNT = -1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ZTZ
 | 
						|
*> \verbatim
 | 
						|
*>          ZTZ is DOUBLE PRECISION
 | 
						|
*>           The square of the 2-norm of Z.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] MINGMA
 | 
						|
*> \verbatim
 | 
						|
*>          MINGMA is DOUBLE PRECISION
 | 
						|
*>           The reciprocal of the largest (in magnitude) diagonal
 | 
						|
*>           element of the inverse of L D L**T - sigma I.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] R
 | 
						|
*> \verbatim
 | 
						|
*>          R is INTEGER
 | 
						|
*>           The twist index for the twisted factorization used to
 | 
						|
*>           compute Z.
 | 
						|
*>           On input, 0 <= R <= N. If R is input as 0, R is set to
 | 
						|
*>           the index where (L D L**T - sigma I)^{-1} is largest
 | 
						|
*>           in magnitude. If 1 <= R <= N, R is unchanged.
 | 
						|
*>           On output, R contains the twist index used to compute Z.
 | 
						|
*>           Ideally, R designates the position of the maximum entry in the
 | 
						|
*>           eigenvector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ISUPPZ
 | 
						|
*> \verbatim
 | 
						|
*>          ISUPPZ is INTEGER array, dimension (2)
 | 
						|
*>           The support of the vector in Z, i.e., the vector Z is
 | 
						|
*>           nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] NRMINV
 | 
						|
*> \verbatim
 | 
						|
*>          NRMINV is DOUBLE PRECISION
 | 
						|
*>           NRMINV = 1/SQRT( ZTZ )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>           The residual of the FP vector.
 | 
						|
*>           RESID = ABS( MINGMA )/SQRT( ZTZ )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RQCORR
 | 
						|
*> \verbatim
 | 
						|
*>          RQCORR is DOUBLE PRECISION
 | 
						|
*>           The Rayleigh Quotient correction to LAMBDA.
 | 
						|
*>           RQCORR = MINGMA*TMP
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (4*N)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Beresford Parlett, University of California, Berkeley, USA \n
 | 
						|
*> Jim Demmel, University of California, Berkeley, USA \n
 | 
						|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
 | 
						|
*> Osni Marques, LBNL/NERSC, USA \n
 | 
						|
*> Christof Voemel, University of California, Berkeley, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
 | 
						|
     $           PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
 | 
						|
     $           R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            WANTNC
 | 
						|
      INTEGER   B1, BN, N, NEGCNT, R
 | 
						|
      DOUBLE PRECISION   GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
 | 
						|
     $                   RQCORR, ZTZ
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISUPPZ( * )
 | 
						|
      DOUBLE PRECISION   D( * ), L( * ), LD( * ), LLD( * ),
 | 
						|
     $                  WORK( * )
 | 
						|
      DOUBLE PRECISION Z( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            SAWNAN1, SAWNAN2
 | 
						|
      INTEGER            I, INDLPL, INDP, INDS, INDUMN, NEG1, NEG2, R1,
 | 
						|
     $                   R2
 | 
						|
      DOUBLE PRECISION   DMINUS, DPLUS, EPS, S, TMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL DISNAN
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DISNAN, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Precision' )
 | 
						|
 | 
						|
 | 
						|
      IF( R.EQ.0 ) THEN
 | 
						|
         R1 = B1
 | 
						|
         R2 = BN
 | 
						|
      ELSE
 | 
						|
         R1 = R
 | 
						|
         R2 = R
 | 
						|
      END IF
 | 
						|
 | 
						|
*     Storage for LPLUS
 | 
						|
      INDLPL = 0
 | 
						|
*     Storage for UMINUS
 | 
						|
      INDUMN = N
 | 
						|
      INDS = 2*N + 1
 | 
						|
      INDP = 3*N + 1
 | 
						|
 | 
						|
      IF( B1.EQ.1 ) THEN
 | 
						|
         WORK( INDS ) = ZERO
 | 
						|
      ELSE
 | 
						|
         WORK( INDS+B1-1 ) = LLD( B1-1 )
 | 
						|
      END IF
 | 
						|
 | 
						|
*
 | 
						|
*     Compute the stationary transform (using the differential form)
 | 
						|
*     until the index R2.
 | 
						|
*
 | 
						|
      SAWNAN1 = .FALSE.
 | 
						|
      NEG1 = 0
 | 
						|
      S = WORK( INDS+B1-1 ) - LAMBDA
 | 
						|
      DO 50 I = B1, R1 - 1
 | 
						|
         DPLUS = D( I ) + S
 | 
						|
         WORK( INDLPL+I ) = LD( I ) / DPLUS
 | 
						|
         IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
 | 
						|
         WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
 | 
						|
         S = WORK( INDS+I ) - LAMBDA
 | 
						|
 50   CONTINUE
 | 
						|
      SAWNAN1 = DISNAN( S )
 | 
						|
      IF( SAWNAN1 ) GOTO 60
 | 
						|
      DO 51 I = R1, R2 - 1
 | 
						|
         DPLUS = D( I ) + S
 | 
						|
         WORK( INDLPL+I ) = LD( I ) / DPLUS
 | 
						|
         WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
 | 
						|
         S = WORK( INDS+I ) - LAMBDA
 | 
						|
 51   CONTINUE
 | 
						|
      SAWNAN1 = DISNAN( S )
 | 
						|
*
 | 
						|
 60   CONTINUE
 | 
						|
      IF( SAWNAN1 ) THEN
 | 
						|
*        Runs a slower version of the above loop if a NaN is detected
 | 
						|
         NEG1 = 0
 | 
						|
         S = WORK( INDS+B1-1 ) - LAMBDA
 | 
						|
         DO 70 I = B1, R1 - 1
 | 
						|
            DPLUS = D( I ) + S
 | 
						|
            IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
 | 
						|
            WORK( INDLPL+I ) = LD( I ) / DPLUS
 | 
						|
            IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
 | 
						|
            WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
 | 
						|
            IF( WORK( INDLPL+I ).EQ.ZERO )
 | 
						|
     $                      WORK( INDS+I ) = LLD( I )
 | 
						|
            S = WORK( INDS+I ) - LAMBDA
 | 
						|
 70      CONTINUE
 | 
						|
         DO 71 I = R1, R2 - 1
 | 
						|
            DPLUS = D( I ) + S
 | 
						|
            IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
 | 
						|
            WORK( INDLPL+I ) = LD( I ) / DPLUS
 | 
						|
            WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
 | 
						|
            IF( WORK( INDLPL+I ).EQ.ZERO )
 | 
						|
     $                      WORK( INDS+I ) = LLD( I )
 | 
						|
            S = WORK( INDS+I ) - LAMBDA
 | 
						|
 71      CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the progressive transform (using the differential form)
 | 
						|
*     until the index R1
 | 
						|
*
 | 
						|
      SAWNAN2 = .FALSE.
 | 
						|
      NEG2 = 0
 | 
						|
      WORK( INDP+BN-1 ) = D( BN ) - LAMBDA
 | 
						|
      DO 80 I = BN - 1, R1, -1
 | 
						|
         DMINUS = LLD( I ) + WORK( INDP+I )
 | 
						|
         TMP = D( I ) / DMINUS
 | 
						|
         IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
 | 
						|
         WORK( INDUMN+I ) = L( I )*TMP
 | 
						|
         WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
 | 
						|
 80   CONTINUE
 | 
						|
      TMP = WORK( INDP+R1-1 )
 | 
						|
      SAWNAN2 = DISNAN( TMP )
 | 
						|
 | 
						|
      IF( SAWNAN2 ) THEN
 | 
						|
*        Runs a slower version of the above loop if a NaN is detected
 | 
						|
         NEG2 = 0
 | 
						|
         DO 100 I = BN-1, R1, -1
 | 
						|
            DMINUS = LLD( I ) + WORK( INDP+I )
 | 
						|
            IF(ABS(DMINUS).LT.PIVMIN) DMINUS = -PIVMIN
 | 
						|
            TMP = D( I ) / DMINUS
 | 
						|
            IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
 | 
						|
            WORK( INDUMN+I ) = L( I )*TMP
 | 
						|
            WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
 | 
						|
            IF( TMP.EQ.ZERO )
 | 
						|
     $          WORK( INDP+I-1 ) = D( I ) - LAMBDA
 | 
						|
 100     CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Find the index (from R1 to R2) of the largest (in magnitude)
 | 
						|
*     diagonal element of the inverse
 | 
						|
*
 | 
						|
      MINGMA = WORK( INDS+R1-1 ) + WORK( INDP+R1-1 )
 | 
						|
      IF( MINGMA.LT.ZERO ) NEG1 = NEG1 + 1
 | 
						|
      IF( WANTNC ) THEN
 | 
						|
         NEGCNT = NEG1 + NEG2
 | 
						|
      ELSE
 | 
						|
         NEGCNT = -1
 | 
						|
      ENDIF
 | 
						|
      IF( ABS(MINGMA).EQ.ZERO )
 | 
						|
     $   MINGMA = EPS*WORK( INDS+R1-1 )
 | 
						|
      R = R1
 | 
						|
      DO 110 I = R1, R2 - 1
 | 
						|
         TMP = WORK( INDS+I ) + WORK( INDP+I )
 | 
						|
         IF( TMP.EQ.ZERO )
 | 
						|
     $      TMP = EPS*WORK( INDS+I )
 | 
						|
         IF( ABS( TMP ).LE.ABS( MINGMA ) ) THEN
 | 
						|
            MINGMA = TMP
 | 
						|
            R = I + 1
 | 
						|
         END IF
 | 
						|
 110  CONTINUE
 | 
						|
*
 | 
						|
*     Compute the FP vector: solve N^T v = e_r
 | 
						|
*
 | 
						|
      ISUPPZ( 1 ) = B1
 | 
						|
      ISUPPZ( 2 ) = BN
 | 
						|
      Z( R ) = ONE
 | 
						|
      ZTZ = ONE
 | 
						|
*
 | 
						|
*     Compute the FP vector upwards from R
 | 
						|
*
 | 
						|
      IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN
 | 
						|
         DO 210 I = R-1, B1, -1
 | 
						|
            Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
 | 
						|
            IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
 | 
						|
     $           THEN
 | 
						|
               Z( I ) = ZERO
 | 
						|
               ISUPPZ( 1 ) = I + 1
 | 
						|
               GOTO 220
 | 
						|
            ENDIF
 | 
						|
            ZTZ = ZTZ + Z( I )*Z( I )
 | 
						|
 210     CONTINUE
 | 
						|
 220     CONTINUE
 | 
						|
      ELSE
 | 
						|
*        Run slower loop if NaN occurred.
 | 
						|
         DO 230 I = R - 1, B1, -1
 | 
						|
            IF( Z( I+1 ).EQ.ZERO ) THEN
 | 
						|
               Z( I ) = -( LD( I+1 ) / LD( I ) )*Z( I+2 )
 | 
						|
            ELSE
 | 
						|
               Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
 | 
						|
            END IF
 | 
						|
            IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
 | 
						|
     $           THEN
 | 
						|
               Z( I ) = ZERO
 | 
						|
               ISUPPZ( 1 ) = I + 1
 | 
						|
               GO TO 240
 | 
						|
            END IF
 | 
						|
            ZTZ = ZTZ + Z( I )*Z( I )
 | 
						|
 230     CONTINUE
 | 
						|
 240     CONTINUE
 | 
						|
      ENDIF
 | 
						|
 | 
						|
*     Compute the FP vector downwards from R in blocks of size BLKSIZ
 | 
						|
      IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN
 | 
						|
         DO 250 I = R, BN-1
 | 
						|
            Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) )
 | 
						|
            IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
 | 
						|
     $         THEN
 | 
						|
               Z( I+1 ) = ZERO
 | 
						|
               ISUPPZ( 2 ) = I
 | 
						|
               GO TO 260
 | 
						|
            END IF
 | 
						|
            ZTZ = ZTZ + Z( I+1 )*Z( I+1 )
 | 
						|
 250     CONTINUE
 | 
						|
 260     CONTINUE
 | 
						|
      ELSE
 | 
						|
*        Run slower loop if NaN occurred.
 | 
						|
         DO 270 I = R, BN - 1
 | 
						|
            IF( Z( I ).EQ.ZERO ) THEN
 | 
						|
               Z( I+1 ) = -( LD( I-1 ) / LD( I ) )*Z( I-1 )
 | 
						|
            ELSE
 | 
						|
               Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) )
 | 
						|
            END IF
 | 
						|
            IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
 | 
						|
     $           THEN
 | 
						|
               Z( I+1 ) = ZERO
 | 
						|
               ISUPPZ( 2 ) = I
 | 
						|
               GO TO 280
 | 
						|
            END IF
 | 
						|
            ZTZ = ZTZ + Z( I+1 )*Z( I+1 )
 | 
						|
 270     CONTINUE
 | 
						|
 280     CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute quantities for convergence test
 | 
						|
*
 | 
						|
      TMP = ONE / ZTZ
 | 
						|
      NRMINV = SQRT( TMP )
 | 
						|
      RESID = ABS( MINGMA )*NRMINV
 | 
						|
      RQCORR = MINGMA*TMP
 | 
						|
*
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLAR1V
 | 
						|
*
 | 
						|
      END
 |