1208 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1208 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SCHKHS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
| *                          NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, WR1,
 | |
| *                          WI1, WR2, WI2, WR3, WI3, EVECTL, EVECTR, EVECTY,
 | |
| *                          EVECTX, UU, TAU, WORK, NWORK, IWORK, SELECT,
 | |
| *                          RESULT, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
 | |
| *       REAL               THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * ), SELECT( * )
 | |
| *       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | |
| *       REAL               A( LDA, * ), EVECTL( LDU, * ),
 | |
| *      $                   EVECTR( LDU, * ), EVECTX( LDU, * ),
 | |
| *      $                   EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ),
 | |
| *      $                   T1( LDA, * ), T2( LDA, * ), TAU( * ),
 | |
| *      $                   U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
 | |
| *      $                   WI1( * ), WI2( * ), WI3( * ), WORK( * ),
 | |
| *      $                   WR1( * ), WR2( * ), WR3( * ), Z( LDU, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    SCHKHS  checks the nonsymmetric eigenvalue problem routines.
 | |
| *>
 | |
| *>            SGEHRD factors A as  U H U' , where ' means transpose,
 | |
| *>            H is hessenberg, and U is an orthogonal matrix.
 | |
| *>
 | |
| *>            SORGHR generates the orthogonal matrix U.
 | |
| *>
 | |
| *>            SORMHR multiplies a matrix by the orthogonal matrix U.
 | |
| *>
 | |
| *>            SHSEQR factors H as  Z T Z' , where Z is orthogonal and
 | |
| *>            T is "quasi-triangular", and the eigenvalue vector W.
 | |
| *>
 | |
| *>            STREVC computes the left and right eigenvector matrices
 | |
| *>            L and R for T.
 | |
| *>
 | |
| *>            SHSEIN computes the left and right eigenvector matrices
 | |
| *>            Y and X for H, using inverse iteration.
 | |
| *>
 | |
| *>            STREVC3 computes left and right eigenvector matrices
 | |
| *>            from a Schur matrix T and backtransforms them with Z
 | |
| *>            to eigenvector matrices L and R for A. L and R are
 | |
| *>            GE matrices.
 | |
| *>
 | |
| *>    When SCHKHS is called, a number of matrix "sizes" ("n's") and a
 | |
| *>    number of matrix "types" are specified.  For each size ("n")
 | |
| *>    and each type of matrix, one matrix will be generated and used
 | |
| *>    to test the nonsymmetric eigenroutines.  For each matrix, 16
 | |
| *>    tests will be performed:
 | |
| *>
 | |
| *>    (1)     | A - U H U**T | / ( |A| n ulp )
 | |
| *>
 | |
| *>    (2)     | I - UU**T | / ( n ulp )
 | |
| *>
 | |
| *>    (3)     | H - Z T Z**T | / ( |H| n ulp )
 | |
| *>
 | |
| *>    (4)     | I - ZZ**T | / ( n ulp )
 | |
| *>
 | |
| *>    (5)     | A - UZ H (UZ)**T | / ( |A| n ulp )
 | |
| *>
 | |
| *>    (6)     | I - UZ (UZ)**T | / ( n ulp )
 | |
| *>
 | |
| *>    (7)     | T(Z computed) - T(Z not computed) | / ( |T| ulp )
 | |
| *>
 | |
| *>    (8)     | W(Z computed) - W(Z not computed) | / ( |W| ulp )
 | |
| *>
 | |
| *>    (9)     | TR - RW | / ( |T| |R| ulp )
 | |
| *>
 | |
| *>    (10)    | L**H T - W**H L | / ( |T| |L| ulp )
 | |
| *>
 | |
| *>    (11)    | HX - XW | / ( |H| |X| ulp )
 | |
| *>
 | |
| *>    (12)    | Y**H H - W**H Y | / ( |H| |Y| ulp )
 | |
| *>
 | |
| *>    (13)    | AX - XW | / ( |A| |X| ulp )
 | |
| *>
 | |
| *>    (14)    | Y**H A - W**H Y | / ( |A| |Y| ulp )
 | |
| *>
 | |
| *>    (15)    | AR - RW | / ( |A| |R| ulp )
 | |
| *>
 | |
| *>    (16)    | LA - WL | / ( |A| |L| ulp )
 | |
| *>
 | |
| *>    The "sizes" are specified by an array NN(1:NSIZES); the value of
 | |
| *>    each element NN(j) specifies one size.
 | |
| *>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | |
| *>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *>    Currently, the list of possible types is:
 | |
| *>
 | |
| *>    (1)  The zero matrix.
 | |
| *>    (2)  The identity matrix.
 | |
| *>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
 | |
| *>
 | |
| *>    (4)  A diagonal matrix with evenly spaced entries
 | |
| *>         1, ..., ULP  and random signs.
 | |
| *>         (ULP = (first number larger than 1) - 1 )
 | |
| *>    (5)  A diagonal matrix with geometrically spaced entries
 | |
| *>         1, ..., ULP  and random signs.
 | |
| *>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | |
| *>         and random signs.
 | |
| *>
 | |
| *>    (7)  Same as (4), but multiplied by SQRT( overflow threshold )
 | |
| *>    (8)  Same as (4), but multiplied by SQRT( underflow threshold )
 | |
| *>
 | |
| *>    (9)  A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has evenly spaced entries 1, ..., ULP with random signs
 | |
| *>         on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (10) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has geometrically spaced entries 1, ..., ULP with random
 | |
| *>         signs on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (11) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has "clustered" entries 1, ULP,..., ULP with random
 | |
| *>         signs on the diagonal and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (12) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has real or complex conjugate paired eigenvalues randomly
 | |
| *>         chosen from ( ULP, 1 ) and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (13) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
 | |
| *>         with random signs on the diagonal and random O(1) entries
 | |
| *>         in the upper triangle.
 | |
| *>
 | |
| *>    (14) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has geometrically spaced entries
 | |
| *>         1, ..., ULP with random signs on the diagonal and random
 | |
| *>         O(1) entries in the upper triangle.
 | |
| *>
 | |
| *>    (15) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
 | |
| *>         with random signs on the diagonal and random O(1) entries
 | |
| *>         in the upper triangle.
 | |
| *>
 | |
| *>    (16) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has real or complex conjugate paired
 | |
| *>         eigenvalues randomly chosen from ( ULP, 1 ) and random
 | |
| *>         O(1) entries in the upper triangle.
 | |
| *>
 | |
| *>    (17) Same as (16), but multiplied by SQRT( overflow threshold )
 | |
| *>    (18) Same as (16), but multiplied by SQRT( underflow threshold )
 | |
| *>
 | |
| *>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
 | |
| *>    (20) Same as (19), but multiplied by SQRT( overflow threshold )
 | |
| *>    (21) Same as (19), but multiplied by SQRT( underflow threshold )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \verbatim
 | |
| *>  NSIZES - INTEGER
 | |
| *>           The number of sizes of matrices to use.  If it is zero,
 | |
| *>           SCHKHS does nothing.  It must be at least zero.
 | |
| *>           Not modified.
 | |
| *>
 | |
| *>  NN     - INTEGER array, dimension (NSIZES)
 | |
| *>           An array containing the sizes to be used for the matrices.
 | |
| *>           Zero values will be skipped.  The values must be at least
 | |
| *>           zero.
 | |
| *>           Not modified.
 | |
| *>
 | |
| *>  NTYPES - INTEGER
 | |
| *>           The number of elements in DOTYPE.   If it is zero, SCHKHS
 | |
| *>           does nothing.  It must be at least zero.  If it is MAXTYP+1
 | |
| *>           and NSIZES is 1, then an additional type, MAXTYP+1 is
 | |
| *>           defined, which is to use whatever matrix is in A.  This
 | |
| *>           is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | |
| *>           DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *>           Not modified.
 | |
| *>
 | |
| *>  DOTYPE - LOGICAL array, dimension (NTYPES)
 | |
| *>           If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>           matrix of that size and of type j will be generated.
 | |
| *>           If NTYPES is smaller than the maximum number of types
 | |
| *>           defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>           MAXTYP will not be generated.  If NTYPES is larger
 | |
| *>           than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>           will be ignored.
 | |
| *>           Not modified.
 | |
| *>
 | |
| *>  ISEED  - INTEGER array, dimension (4)
 | |
| *>           On entry ISEED specifies the seed of the random number
 | |
| *>           generator. The array elements should be between 0 and 4095;
 | |
| *>           if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>           be odd.  The random number generator uses a linear
 | |
| *>           congruential sequence limited to small integers, and so
 | |
| *>           should produce machine independent random numbers. The
 | |
| *>           values of ISEED are changed on exit, and can be used in the
 | |
| *>           next call to SCHKHS to continue the same random number
 | |
| *>           sequence.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  THRESH - REAL
 | |
| *>           A test will count as "failed" if the "error", computed as
 | |
| *>           described above, exceeds THRESH.  Note that the error
 | |
| *>           is scaled to be O(1), so THRESH should be a reasonably
 | |
| *>           small multiple of 1, e.g., 10 or 100.  In particular,
 | |
| *>           it should not depend on the precision (single vs. double)
 | |
| *>           or the size of the matrix.  It must be at least zero.
 | |
| *>           Not modified.
 | |
| *>
 | |
| *>  NOUNIT - INTEGER
 | |
| *>           The FORTRAN unit number for printing out error messages
 | |
| *>           (e.g., if a routine returns IINFO not equal to 0.)
 | |
| *>           Not modified.
 | |
| *>
 | |
| *>  A      - REAL array, dimension (LDA,max(NN))
 | |
| *>           Used to hold the matrix whose eigenvalues are to be
 | |
| *>           computed.  On exit, A contains the last matrix actually
 | |
| *>           used.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  LDA    - INTEGER
 | |
| *>           The leading dimension of A, H, T1 and T2.  It must be at
 | |
| *>           least 1 and at least max( NN ).
 | |
| *>           Not modified.
 | |
| *>
 | |
| *>  H      - REAL array, dimension (LDA,max(NN))
 | |
| *>           The upper hessenberg matrix computed by SGEHRD.  On exit,
 | |
| *>           H contains the Hessenberg form of the matrix in A.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  T1     - REAL array, dimension (LDA,max(NN))
 | |
| *>           The Schur (="quasi-triangular") matrix computed by SHSEQR
 | |
| *>           if Z is computed.  On exit, T1 contains the Schur form of
 | |
| *>           the matrix in A.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  T2     - REAL array, dimension (LDA,max(NN))
 | |
| *>           The Schur matrix computed by SHSEQR when Z is not computed.
 | |
| *>           This should be identical to T1.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  LDU    - INTEGER
 | |
| *>           The leading dimension of U, Z, UZ and UU.  It must be at
 | |
| *>           least 1 and at least max( NN ).
 | |
| *>           Not modified.
 | |
| *>
 | |
| *>  U      - REAL array, dimension (LDU,max(NN))
 | |
| *>           The orthogonal matrix computed by SGEHRD.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  Z      - REAL array, dimension (LDU,max(NN))
 | |
| *>           The orthogonal matrix computed by SHSEQR.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  UZ     - REAL array, dimension (LDU,max(NN))
 | |
| *>           The product of U times Z.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  WR1    - REAL array, dimension (max(NN))
 | |
| *>  WI1    - REAL array, dimension (max(NN))
 | |
| *>           The real and imaginary parts of the eigenvalues of A,
 | |
| *>           as computed when Z is computed.
 | |
| *>           On exit, WR1 + WI1*i are the eigenvalues of the matrix in A.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  WR2    - REAL array, dimension (max(NN))
 | |
| *>  WI2    - REAL array, dimension (max(NN))
 | |
| *>           The real and imaginary parts of the eigenvalues of A,
 | |
| *>           as computed when T is computed but not Z.
 | |
| *>           On exit, WR2 + WI2*i are the eigenvalues of the matrix in A.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  WR3    - REAL array, dimension (max(NN))
 | |
| *>  WI3    - REAL array, dimension (max(NN))
 | |
| *>           Like WR1, WI1, these arrays contain the eigenvalues of A,
 | |
| *>           but those computed when SHSEQR only computes the
 | |
| *>           eigenvalues, i.e., not the Schur vectors and no more of the
 | |
| *>           Schur form than is necessary for computing the
 | |
| *>           eigenvalues.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  EVECTL - REAL array, dimension (LDU,max(NN))
 | |
| *>           The (upper triangular) left eigenvector matrix for the
 | |
| *>           matrix in T1.  For complex conjugate pairs, the real part
 | |
| *>           is stored in one row and the imaginary part in the next.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  EVECTR - REAL array, dimension (LDU,max(NN))
 | |
| *>           The (upper triangular) right eigenvector matrix for the
 | |
| *>           matrix in T1.  For complex conjugate pairs, the real part
 | |
| *>           is stored in one column and the imaginary part in the next.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  EVECTY - REAL array, dimension (LDU,max(NN))
 | |
| *>           The left eigenvector matrix for the
 | |
| *>           matrix in H.  For complex conjugate pairs, the real part
 | |
| *>           is stored in one row and the imaginary part in the next.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  EVECTX - REAL array, dimension (LDU,max(NN))
 | |
| *>           The right eigenvector matrix for the
 | |
| *>           matrix in H.  For complex conjugate pairs, the real part
 | |
| *>           is stored in one column and the imaginary part in the next.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  UU     - REAL array, dimension (LDU,max(NN))
 | |
| *>           Details of the orthogonal matrix computed by SGEHRD.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  TAU    - REAL array, dimension(max(NN))
 | |
| *>           Further details of the orthogonal matrix computed by SGEHRD.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  WORK   - REAL array, dimension (NWORK)
 | |
| *>           Workspace.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  NWORK  - INTEGER
 | |
| *>           The number of entries in WORK.  NWORK >= 4*NN(j)*NN(j) + 2.
 | |
| *>
 | |
| *>  IWORK  - INTEGER array, dimension (max(NN))
 | |
| *>           Workspace.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  SELECT - LOGICAL array, dimension (max(NN))
 | |
| *>           Workspace.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  RESULT - REAL array, dimension (16)
 | |
| *>           The values computed by the fourteen tests described above.
 | |
| *>           The values are currently limited to 1/ulp, to avoid
 | |
| *>           overflow.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>  INFO   - INTEGER
 | |
| *>           If 0, then everything ran OK.
 | |
| *>            -1: NSIZES < 0
 | |
| *>            -2: Some NN(j) < 0
 | |
| *>            -3: NTYPES < 0
 | |
| *>            -6: THRESH < 0
 | |
| *>            -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
 | |
| *>           -14: LDU < 1 or LDU < NMAX.
 | |
| *>           -28: NWORK too small.
 | |
| *>           If  SLATMR, SLATMS, or SLATME returns an error code, the
 | |
| *>               absolute value of it is returned.
 | |
| *>           If 1, then SHSEQR could not find all the shifts.
 | |
| *>           If 2, then the EISPACK code (for small blocks) failed.
 | |
| *>           If >2, then 30*N iterations were not enough to find an
 | |
| *>               eigenvalue or to decompose the problem.
 | |
| *>           Modified.
 | |
| *>
 | |
| *>-----------------------------------------------------------------------
 | |
| *>
 | |
| *>     Some Local Variables and Parameters:
 | |
| *>     ---- ----- --------- --- ----------
 | |
| *>
 | |
| *>     ZERO, ONE       Real 0 and 1.
 | |
| *>     MAXTYP          The number of types defined.
 | |
| *>     MTEST           The number of tests defined: care must be taken
 | |
| *>                     that (1) the size of RESULT, (2) the number of
 | |
| *>                     tests actually performed, and (3) MTEST agree.
 | |
| *>     NTEST           The number of tests performed on this matrix
 | |
| *>                     so far.  This should be less than MTEST, and
 | |
| *>                     equal to it by the last test.  It will be less
 | |
| *>                     if any of the routines being tested indicates
 | |
| *>                     that it could not compute the matrices that
 | |
| *>                     would be tested.
 | |
| *>     NMAX            Largest value in NN.
 | |
| *>     NMATS           The number of matrices generated so far.
 | |
| *>     NERRS           The number of tests which have exceeded THRESH
 | |
| *>                     so far (computed by SLAFTS).
 | |
| *>     COND, CONDS,
 | |
| *>     IMODE           Values to be passed to the matrix generators.
 | |
| *>     ANORM           Norm of A; passed to matrix generators.
 | |
| *>
 | |
| *>     OVFL, UNFL      Overflow and underflow thresholds.
 | |
| *>     ULP, ULPINV     Finest relative precision and its inverse.
 | |
| *>     RTOVFL, RTUNFL,
 | |
| *>     RTULP, RTULPI   Square roots of the previous 4 values.
 | |
| *>
 | |
| *>             The following four arrays decode JTYPE:
 | |
| *>     KTYPE(j)        The general type (1-10) for type "j".
 | |
| *>     KMODE(j)        The MODE value to be passed to the matrix
 | |
| *>                     generator for type "j".
 | |
| *>     KMAGN(j)        The order of magnitude ( O(1),
 | |
| *>                     O(overflow^(1/2) ), O(underflow^(1/2) )
 | |
| *>     KCONDS(j)       Selects whether CONDS is to be 1 or
 | |
| *>                     1/sqrt(ulp).  (0 means irrelevant.)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
|      $                   NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, WR1,
 | |
|      $                   WI1, WR2, WI2, WR3, WI3, EVECTL, EVECTR,
 | |
|      $                   EVECTY, EVECTX, UU, TAU, WORK, NWORK, IWORK,
 | |
|      $                   SELECT, RESULT, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
 | |
|       REAL               THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * ), SELECT( * )
 | |
|       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | |
|       REAL               A( LDA, * ), EVECTL( LDU, * ),
 | |
|      $                   EVECTR( LDU, * ), EVECTX( LDU, * ),
 | |
|      $                   EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ),
 | |
|      $                   T1( LDA, * ), T2( LDA, * ), TAU( * ),
 | |
|      $                   U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
 | |
|      $                   WI1( * ), WI2( * ), WI3( * ), WORK( * ),
 | |
|      $                   WR1( * ), WR2( * ), WR3( * ), Z( LDU, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0, ONE = 1.0 )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 21 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADNN, MATCH
 | |
|       INTEGER            I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL,
 | |
|      $                   JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS,
 | |
|      $                   NMATS, NMAX, NSELC, NSELR, NTEST, NTESTT
 | |
|       REAL               ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP,
 | |
|      $                   RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       CHARACTER          ADUMMA( 1 )
 | |
|       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
 | |
|      $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
 | |
|      $                   KTYPE( MAXTYP )
 | |
|       REAL               DUMMA( 6 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SGEHRD, SGEMM, SGET10, SGET22, SHSEIN,
 | |
|      $                   SHSEQR, SHST01, SLABAD, SLACPY, SLAFTS, SLASET,
 | |
|      $                   SLASUM, SLATME, SLATMR, SLATMS, SORGHR, SORMHR,
 | |
|      $                   STREVC, STREVC3, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
 | |
|       DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
 | |
|      $                   3, 1, 2, 3 /
 | |
|       DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
 | |
|      $                   1, 5, 5, 5, 4, 3, 1 /
 | |
|       DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       NTESTT = 0
 | |
|       INFO = 0
 | |
| *
 | |
|       BADNN = .FALSE.
 | |
|       NMAX = 0
 | |
|       DO 10 J = 1, NSIZES
 | |
|          NMAX = MAX( NMAX, NN( J ) )
 | |
|          IF( NN( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( THRESH.LT.ZERO ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN
 | |
|          INFO = -28
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SCHKHS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     More important constants
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       OVFL = SLAMCH( 'Overflow' )
 | |
|       CALL SLABAD( UNFL, OVFL )
 | |
|       ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | |
|       ULPINV = ONE / ULP
 | |
|       RTUNFL = SQRT( UNFL )
 | |
|       RTOVFL = SQRT( OVFL )
 | |
|       RTULP = SQRT( ULP )
 | |
|       RTULPI = ONE / RTULP
 | |
| *
 | |
| *     Loop over sizes, types
 | |
| *
 | |
|       NERRS = 0
 | |
|       NMATS = 0
 | |
| *
 | |
|       DO 270 JSIZE = 1, NSIZES
 | |
|          N = NN( JSIZE )
 | |
|          IF( N.EQ.0 )
 | |
|      $      GO TO 270
 | |
|          N1 = MAX( 1, N )
 | |
|          ANINV = ONE / REAL( N1 )
 | |
| *
 | |
|          IF( NSIZES.NE.1 ) THEN
 | |
|             MTYPES = MIN( MAXTYP, NTYPES )
 | |
|          ELSE
 | |
|             MTYPES = MIN( MAXTYP+1, NTYPES )
 | |
|          END IF
 | |
| *
 | |
|          DO 260 JTYPE = 1, MTYPES
 | |
|             IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $         GO TO 260
 | |
|             NMATS = NMATS + 1
 | |
|             NTEST = 0
 | |
| *
 | |
| *           Save ISEED in case of an error.
 | |
| *
 | |
|             DO 20 J = 1, 4
 | |
|                IOLDSD( J ) = ISEED( J )
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Initialize RESULT
 | |
| *
 | |
|             DO 30 J = 1, 16
 | |
|                RESULT( J ) = ZERO
 | |
|    30       CONTINUE
 | |
| *
 | |
| *           Compute "A"
 | |
| *
 | |
| *           Control parameters:
 | |
| *
 | |
| *           KMAGN  KCONDS  KMODE        KTYPE
 | |
| *       =1  O(1)   1       clustered 1  zero
 | |
| *       =2  large  large   clustered 2  identity
 | |
| *       =3  small          exponential  Jordan
 | |
| *       =4                 arithmetic   diagonal, (w/ eigenvalues)
 | |
| *       =5                 random log   symmetric, w/ eigenvalues
 | |
| *       =6                 random       general, w/ eigenvalues
 | |
| *       =7                              random diagonal
 | |
| *       =8                              random symmetric
 | |
| *       =9                              random general
 | |
| *       =10                             random triangular
 | |
| *
 | |
|             IF( MTYPES.GT.MAXTYP )
 | |
|      $         GO TO 100
 | |
| *
 | |
|             ITYPE = KTYPE( JTYPE )
 | |
|             IMODE = KMODE( JTYPE )
 | |
| *
 | |
| *           Compute norm
 | |
| *
 | |
|             GO TO ( 40, 50, 60 )KMAGN( JTYPE )
 | |
| *
 | |
|    40       CONTINUE
 | |
|             ANORM = ONE
 | |
|             GO TO 70
 | |
| *
 | |
|    50       CONTINUE
 | |
|             ANORM = ( RTOVFL*ULP )*ANINV
 | |
|             GO TO 70
 | |
| *
 | |
|    60       CONTINUE
 | |
|             ANORM = RTUNFL*N*ULPINV
 | |
|             GO TO 70
 | |
| *
 | |
|    70       CONTINUE
 | |
| *
 | |
|             CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | |
|             IINFO = 0
 | |
|             COND = ULPINV
 | |
| *
 | |
| *           Special Matrices
 | |
| *
 | |
|             IF( ITYPE.EQ.1 ) THEN
 | |
| *
 | |
| *              Zero
 | |
| *
 | |
|                IINFO = 0
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *              Identity
 | |
| *
 | |
|                DO 80 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|    80          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *              Jordan Block
 | |
| *
 | |
|                DO 90 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|                   IF( JCOL.GT.1 )
 | |
|      $               A( JCOL, JCOL-1 ) = ONE
 | |
|    90          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.4 ) THEN
 | |
| *
 | |
| *              Diagonal Matrix, [Eigen]values Specified
 | |
| *
 | |
|                CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.5 ) THEN
 | |
| *
 | |
| *              Symmetric, eigenvalues specified
 | |
| *
 | |
|                CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.6 ) THEN
 | |
| *
 | |
| *              General, eigenvalues specified
 | |
| *
 | |
|                IF( KCONDS( JTYPE ).EQ.1 ) THEN
 | |
|                   CONDS = ONE
 | |
|                ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
 | |
|                   CONDS = RTULPI
 | |
|                ELSE
 | |
|                   CONDS = ZERO
 | |
|                END IF
 | |
| *
 | |
|                ADUMMA( 1 ) = ' '
 | |
|                CALL SLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
 | |
|      $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
 | |
|      $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.7 ) THEN
 | |
| *
 | |
| *              Diagonal, random eigenvalues
 | |
| *
 | |
|                CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.8 ) THEN
 | |
| *
 | |
| *              Symmetric, random eigenvalues
 | |
| *
 | |
|                CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.9 ) THEN
 | |
| *
 | |
| *              General, random eigenvalues
 | |
| *
 | |
|                CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.10 ) THEN
 | |
| *
 | |
| *              Triangular, random eigenvalues
 | |
| *
 | |
|                CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                IINFO = 1
 | |
|             END IF
 | |
| *
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|   100       CONTINUE
 | |
| *
 | |
| *           Call SGEHRD to compute H and U, do tests.
 | |
| *
 | |
|             CALL SLACPY( ' ', N, N, A, LDA, H, LDA )
 | |
| *
 | |
|             NTEST = 1
 | |
| *
 | |
|             ILO = 1
 | |
|             IHI = N
 | |
| *
 | |
|             CALL SGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ),
 | |
|      $                   NWORK-N, IINFO )
 | |
| *
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                RESULT( 1 ) = ULPINV
 | |
|                WRITE( NOUNIT, FMT = 9999 )'SGEHRD', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
|             DO 120 J = 1, N - 1
 | |
|                UU( J+1, J ) = ZERO
 | |
|                DO 110 I = J + 2, N
 | |
|                   U( I, J ) = H( I, J )
 | |
|                   UU( I, J ) = H( I, J )
 | |
|                   H( I, J ) = ZERO
 | |
|   110          CONTINUE
 | |
|   120       CONTINUE
 | |
|             CALL SCOPY( N-1, WORK, 1, TAU, 1 )
 | |
|             CALL SORGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ),
 | |
|      $                   NWORK-N, IINFO )
 | |
|             NTEST = 2
 | |
| *
 | |
|             CALL SHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK,
 | |
|      $                   NWORK, RESULT( 1 ) )
 | |
| *
 | |
| *           Call SHSEQR to compute T1, T2 and Z, do tests.
 | |
| *
 | |
| *           Eigenvalues only (WR3,WI3)
 | |
| *
 | |
|             CALL SLACPY( ' ', N, N, H, LDA, T2, LDA )
 | |
|             NTEST = 3
 | |
|             RESULT( 3 ) = ULPINV
 | |
| *
 | |
|             CALL SHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, WR3, WI3, UZ,
 | |
|      $                   LDU, WORK, NWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'SHSEQR(E)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                IF( IINFO.LE.N+2 ) THEN
 | |
|                   INFO = ABS( IINFO )
 | |
|                   GO TO 250
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Eigenvalues (WR2,WI2) and Full Schur Form (T2)
 | |
| *
 | |
|             CALL SLACPY( ' ', N, N, H, LDA, T2, LDA )
 | |
| *
 | |
|             CALL SHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, WR2, WI2, UZ,
 | |
|      $                   LDU, WORK, NWORK, IINFO )
 | |
|             IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'SHSEQR(S)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
| *           Eigenvalues (WR1,WI1), Schur Form (T1), and Schur vectors
 | |
| *           (UZ)
 | |
| *
 | |
|             CALL SLACPY( ' ', N, N, H, LDA, T1, LDA )
 | |
|             CALL SLACPY( ' ', N, N, U, LDU, UZ, LDU )
 | |
| *
 | |
|             CALL SHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, WR1, WI1, UZ,
 | |
|      $                   LDU, WORK, NWORK, IINFO )
 | |
|             IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'SHSEQR(V)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
| *           Compute Z = U' UZ
 | |
| *
 | |
|             CALL SGEMM( 'T', 'N', N, N, N, ONE, U, LDU, UZ, LDU, ZERO,
 | |
|      $                  Z, LDU )
 | |
|             NTEST = 8
 | |
| *
 | |
| *           Do Tests 3: | H - Z T Z' | / ( |H| n ulp )
 | |
| *                and 4: | I - Z Z' | / ( n ulp )
 | |
| *
 | |
|             CALL SHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK,
 | |
|      $                   NWORK, RESULT( 3 ) )
 | |
| *
 | |
| *           Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp )
 | |
| *                and 6: | I - UZ (UZ)' | / ( n ulp )
 | |
| *
 | |
|             CALL SHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK,
 | |
|      $                   NWORK, RESULT( 5 ) )
 | |
| *
 | |
| *           Do Test 7: | T2 - T1 | / ( |T| n ulp )
 | |
| *
 | |
|             CALL SGET10( N, N, T2, LDA, T1, LDA, WORK, RESULT( 7 ) )
 | |
| *
 | |
| *           Do Test 8: | W2 - W1 | / ( max(|W1|,|W2|) ulp )
 | |
| *
 | |
|             TEMP1 = ZERO
 | |
|             TEMP2 = ZERO
 | |
|             DO 130 J = 1, N
 | |
|                TEMP1 = MAX( TEMP1, ABS( WR1( J ) )+ABS( WI1( J ) ),
 | |
|      $                 ABS( WR2( J ) )+ABS( WI2( J ) ) )
 | |
|                TEMP2 = MAX( TEMP2, ABS( WR1( J )-WR2( J ) )+
 | |
|      $                 ABS( WI1( J )-WI2( J ) ) )
 | |
|   130       CONTINUE
 | |
| *
 | |
|             RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
 | |
| *
 | |
| *           Compute the Left and Right Eigenvectors of T
 | |
| *
 | |
| *           Compute the Right eigenvector Matrix:
 | |
| *
 | |
|             NTEST = 9
 | |
|             RESULT( 9 ) = ULPINV
 | |
| *
 | |
| *           Select last max(N/4,1) real, max(N/4,1) complex eigenvectors
 | |
| *
 | |
|             NSELC = 0
 | |
|             NSELR = 0
 | |
|             J = N
 | |
|   140       CONTINUE
 | |
|             IF( WI1( J ).EQ.ZERO ) THEN
 | |
|                IF( NSELR.LT.MAX( N / 4, 1 ) ) THEN
 | |
|                   NSELR = NSELR + 1
 | |
|                   SELECT( J ) = .TRUE.
 | |
|                ELSE
 | |
|                   SELECT( J ) = .FALSE.
 | |
|                END IF
 | |
|                J = J - 1
 | |
|             ELSE
 | |
|                IF( NSELC.LT.MAX( N / 4, 1 ) ) THEN
 | |
|                   NSELC = NSELC + 1
 | |
|                   SELECT( J ) = .TRUE.
 | |
|                   SELECT( J-1 ) = .FALSE.
 | |
|                ELSE
 | |
|                   SELECT( J ) = .FALSE.
 | |
|                   SELECT( J-1 ) = .FALSE.
 | |
|                END IF
 | |
|                J = J - 2
 | |
|             END IF
 | |
|             IF( J.GT.0 )
 | |
|      $         GO TO 140
 | |
| *
 | |
|             CALL STREVC( 'Right', 'All', SELECT, N, T1, LDA, DUMMA, LDU,
 | |
|      $                   EVECTR, LDU, N, IN, WORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'STREVC(R,A)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
| *           Test 9:  | TR - RW | / ( |T| |R| ulp )
 | |
| *
 | |
|             CALL SGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, WR1,
 | |
|      $                   WI1, WORK, DUMMA( 1 ) )
 | |
|             RESULT( 9 ) = DUMMA( 1 )
 | |
|             IF( DUMMA( 2 ).GT.THRESH ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Right', 'STREVC',
 | |
|      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           Compute selected right eigenvectors and confirm that
 | |
| *           they agree with previous right eigenvectors
 | |
| *
 | |
|             CALL STREVC( 'Right', 'Some', SELECT, N, T1, LDA, DUMMA,
 | |
|      $                   LDU, EVECTL, LDU, N, IN, WORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'STREVC(R,S)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
|             K = 1
 | |
|             MATCH = .TRUE.
 | |
|             DO 170 J = 1, N
 | |
|                IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN
 | |
|                   DO 150 JJ = 1, N
 | |
|                      IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN
 | |
|                         MATCH = .FALSE.
 | |
|                         GO TO 180
 | |
|                      END IF
 | |
|   150             CONTINUE
 | |
|                   K = K + 1
 | |
|                ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN
 | |
|                   DO 160 JJ = 1, N
 | |
|                      IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) .OR.
 | |
|      $                   EVECTR( JJ, J+1 ).NE.EVECTL( JJ, K+1 ) ) THEN
 | |
|                         MATCH = .FALSE.
 | |
|                         GO TO 180
 | |
|                      END IF
 | |
|   160             CONTINUE
 | |
|                   K = K + 2
 | |
|                END IF
 | |
|   170       CONTINUE
 | |
|   180       CONTINUE
 | |
|             IF( .NOT.MATCH )
 | |
|      $         WRITE( NOUNIT, FMT = 9997 )'Right', 'STREVC', N, JTYPE,
 | |
|      $         IOLDSD
 | |
| *
 | |
| *           Compute the Left eigenvector Matrix:
 | |
| *
 | |
|             NTEST = 10
 | |
|             RESULT( 10 ) = ULPINV
 | |
|             CALL STREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU,
 | |
|      $                   DUMMA, LDU, N, IN, WORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'STREVC(L,A)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
| *           Test 10:  | LT - WL | / ( |T| |L| ulp )
 | |
| *
 | |
|             CALL SGET22( 'Trans', 'N', 'Conj', N, T1, LDA, EVECTL, LDU,
 | |
|      $                   WR1, WI1, WORK, DUMMA( 3 ) )
 | |
|             RESULT( 10 ) = DUMMA( 3 )
 | |
|             IF( DUMMA( 4 ).GT.THRESH ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Left', 'STREVC', DUMMA( 4 ),
 | |
|      $            N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           Compute selected left eigenvectors and confirm that
 | |
| *           they agree with previous left eigenvectors
 | |
| *
 | |
|             CALL STREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR,
 | |
|      $                   LDU, DUMMA, LDU, N, IN, WORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'STREVC(L,S)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
|             K = 1
 | |
|             MATCH = .TRUE.
 | |
|             DO 210 J = 1, N
 | |
|                IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN
 | |
|                   DO 190 JJ = 1, N
 | |
|                      IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN
 | |
|                         MATCH = .FALSE.
 | |
|                         GO TO 220
 | |
|                      END IF
 | |
|   190             CONTINUE
 | |
|                   K = K + 1
 | |
|                ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN
 | |
|                   DO 200 JJ = 1, N
 | |
|                      IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) .OR.
 | |
|      $                   EVECTL( JJ, J+1 ).NE.EVECTR( JJ, K+1 ) ) THEN
 | |
|                         MATCH = .FALSE.
 | |
|                         GO TO 220
 | |
|                      END IF
 | |
|   200             CONTINUE
 | |
|                   K = K + 2
 | |
|                END IF
 | |
|   210       CONTINUE
 | |
|   220       CONTINUE
 | |
|             IF( .NOT.MATCH )
 | |
|      $         WRITE( NOUNIT, FMT = 9997 )'Left', 'STREVC', N, JTYPE,
 | |
|      $         IOLDSD
 | |
| *
 | |
| *           Call SHSEIN for Right eigenvectors of H, do test 11
 | |
| *
 | |
|             NTEST = 11
 | |
|             RESULT( 11 ) = ULPINV
 | |
|             DO 230 J = 1, N
 | |
|                SELECT( J ) = .TRUE.
 | |
|   230       CONTINUE
 | |
| *
 | |
|             CALL SHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA,
 | |
|      $                   WR3, WI3, DUMMA, LDU, EVECTX, LDU, N1, IN,
 | |
|      $                   WORK, IWORK, IWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'SHSEIN(R)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                IF( IINFO.LT.0 )
 | |
|      $            GO TO 250
 | |
|             ELSE
 | |
| *
 | |
| *              Test 11:  | HX - XW | / ( |H| |X| ulp )
 | |
| *
 | |
| *                        (from inverse iteration)
 | |
| *
 | |
|                CALL SGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, WR3,
 | |
|      $                      WI3, WORK, DUMMA( 1 ) )
 | |
|                IF( DUMMA( 1 ).LT.ULPINV )
 | |
|      $            RESULT( 11 ) = DUMMA( 1 )*ANINV
 | |
|                IF( DUMMA( 2 ).GT.THRESH ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9998 )'Right', 'SHSEIN',
 | |
|      $               DUMMA( 2 ), N, JTYPE, IOLDSD
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Call SHSEIN for Left eigenvectors of H, do test 12
 | |
| *
 | |
|             NTEST = 12
 | |
|             RESULT( 12 ) = ULPINV
 | |
|             DO 240 J = 1, N
 | |
|                SELECT( J ) = .TRUE.
 | |
|   240       CONTINUE
 | |
| *
 | |
|             CALL SHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, WR3,
 | |
|      $                   WI3, EVECTY, LDU, DUMMA, LDU, N1, IN, WORK,
 | |
|      $                   IWORK, IWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'SHSEIN(L)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                IF( IINFO.LT.0 )
 | |
|      $            GO TO 250
 | |
|             ELSE
 | |
| *
 | |
| *              Test 12:  | YH - WY | / ( |H| |Y| ulp )
 | |
| *
 | |
| *                        (from inverse iteration)
 | |
| *
 | |
|                CALL SGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, WR3,
 | |
|      $                      WI3, WORK, DUMMA( 3 ) )
 | |
|                IF( DUMMA( 3 ).LT.ULPINV )
 | |
|      $            RESULT( 12 ) = DUMMA( 3 )*ANINV
 | |
|                IF( DUMMA( 4 ).GT.THRESH ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9998 )'Left', 'SHSEIN',
 | |
|      $               DUMMA( 4 ), N, JTYPE, IOLDSD
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Call SORMHR for Right eigenvectors of A, do test 13
 | |
| *
 | |
|             NTEST = 13
 | |
|             RESULT( 13 ) = ULPINV
 | |
| *
 | |
|             CALL SORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
 | |
|      $                   LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'SORMHR(R)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                IF( IINFO.LT.0 )
 | |
|      $            GO TO 250
 | |
|             ELSE
 | |
| *
 | |
| *              Test 13:  | AX - XW | / ( |A| |X| ulp )
 | |
| *
 | |
| *                        (from inverse iteration)
 | |
| *
 | |
|                CALL SGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, WR3,
 | |
|      $                      WI3, WORK, DUMMA( 1 ) )
 | |
|                IF( DUMMA( 1 ).LT.ULPINV )
 | |
|      $            RESULT( 13 ) = DUMMA( 1 )*ANINV
 | |
|             END IF
 | |
| *
 | |
| *           Call SORMHR for Left eigenvectors of A, do test 14
 | |
| *
 | |
|             NTEST = 14
 | |
|             RESULT( 14 ) = ULPINV
 | |
| *
 | |
|             CALL SORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
 | |
|      $                   LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'SORMHR(L)', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                IF( IINFO.LT.0 )
 | |
|      $            GO TO 250
 | |
|             ELSE
 | |
| *
 | |
| *              Test 14:  | YA - WY | / ( |A| |Y| ulp )
 | |
| *
 | |
| *                        (from inverse iteration)
 | |
| *
 | |
|                CALL SGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, WR3,
 | |
|      $                      WI3, WORK, DUMMA( 3 ) )
 | |
|                IF( DUMMA( 3 ).LT.ULPINV )
 | |
|      $            RESULT( 14 ) = DUMMA( 3 )*ANINV
 | |
|             END IF
 | |
| *
 | |
| *           Compute Left and Right Eigenvectors of A
 | |
| *
 | |
| *           Compute a Right eigenvector matrix:
 | |
| *
 | |
|             NTEST = 15
 | |
|             RESULT( 15 ) = ULPINV
 | |
| *
 | |
|             CALL SLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU )
 | |
| *
 | |
|             CALL STREVC3( 'Right', 'Back', SELECT, N, T1, LDA, DUMMA,
 | |
|      $                    LDU, EVECTR, LDU, N, IN, WORK, NWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'STREVC3(R,B)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
| *           Test 15:  | AR - RW | / ( |A| |R| ulp )
 | |
| *
 | |
| *                     (from Schur decomposition)
 | |
| *
 | |
|             CALL SGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, WR1,
 | |
|      $                   WI1, WORK, DUMMA( 1 ) )
 | |
|             RESULT( 15 ) = DUMMA( 1 )
 | |
|             IF( DUMMA( 2 ).GT.THRESH ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Right', 'STREVC3',
 | |
|      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           Compute a Left eigenvector matrix:
 | |
| *
 | |
|             NTEST = 16
 | |
|             RESULT( 16 ) = ULPINV
 | |
| *
 | |
|             CALL SLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU )
 | |
| *
 | |
|             CALL STREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL,
 | |
|      $                    LDU, DUMMA, LDU, N, IN, WORK, NWORK, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9999 )'STREVC3(L,B)', IINFO, N,
 | |
|      $            JTYPE, IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
| *           Test 16:  | LA - WL | / ( |A| |L| ulp )
 | |
| *
 | |
| *                     (from Schur decomposition)
 | |
| *
 | |
|             CALL SGET22( 'Trans', 'N', 'Conj', N, A, LDA, EVECTL, LDU,
 | |
|      $                   WR1, WI1, WORK, DUMMA( 3 ) )
 | |
|             RESULT( 16 ) = DUMMA( 3 )
 | |
|             IF( DUMMA( 4 ).GT.THRESH ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9998 )'Left', 'STREVC3', DUMMA( 4 ),
 | |
|      $            N, JTYPE, IOLDSD
 | |
|             END IF
 | |
| *
 | |
| *           End of Loop -- Check for RESULT(j) > THRESH
 | |
| *
 | |
|   250       CONTINUE
 | |
| *
 | |
|             NTESTT = NTESTT + NTEST
 | |
|             CALL SLAFTS( 'SHS', N, N, JTYPE, NTEST, RESULT, IOLDSD,
 | |
|      $                   THRESH, NOUNIT, NERRS )
 | |
| *
 | |
|   260    CONTINUE
 | |
|   270 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL SLASUM( 'SHS', NOUNIT, NERRS, NTESTT )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
|  9999 FORMAT( ' SCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | |
|      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | |
|  9998 FORMAT( ' SCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ',
 | |
|      $      'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
 | |
|      $      'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
 | |
|      $      ')' )
 | |
|  9997 FORMAT( ' SCHKHS: Selected ', A, ' Eigenvectors from ', A,
 | |
|      $      ' do not match other eigenvectors ', 9X, 'N=', I6,
 | |
|      $      ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | |
| *
 | |
| *     End of SCHKHS
 | |
| *
 | |
|       END
 |