136 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			136 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE DGETF2F( M, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK routine (version 3.0) --
 | 
						|
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
 | 
						|
*     Courant Institute, Argonne National Lab, and Rice University
 | 
						|
*     June 30, 1992
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  DGETF2 computes an LU factorization of a general m-by-n matrix A
 | 
						|
*  using partial pivoting with row interchanges.
 | 
						|
*
 | 
						|
*  The factorization has the form
 | 
						|
*     A = P * L * U
 | 
						|
*  where P is a permutation matrix, L is lower triangular with unit
 | 
						|
*  diagonal elements (lower trapezoidal if m > n), and U is upper
 | 
						|
*  triangular (upper trapezoidal if m < n).
 | 
						|
*
 | 
						|
*  This is the right-looking Level 2 BLAS version of the algorithm.
 | 
						|
*
 | 
						|
*  Arguments
 | 
						|
*  =========
 | 
						|
*
 | 
						|
*  M       (input) INTEGER
 | 
						|
*          The number of rows of the matrix A.  M >= 0.
 | 
						|
*
 | 
						|
*  N       (input) INTEGER
 | 
						|
*          The number of columns of the matrix A.  N >= 0.
 | 
						|
*
 | 
						|
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*          On entry, the m by n matrix to be factored.
 | 
						|
*          On exit, the factors L and U from the factorization
 | 
						|
*          A = P*L*U; the unit diagonal elements of L are not stored.
 | 
						|
*
 | 
						|
*  LDA     (input) INTEGER
 | 
						|
*          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*
 | 
						|
*  IPIV    (output) INTEGER array, dimension (min(M,N))
 | 
						|
*          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | 
						|
*          matrix was interchanged with row IPIV(i).
 | 
						|
*
 | 
						|
*  INFO    (output) INTEGER
 | 
						|
*          = 0: successful exit
 | 
						|
*          < 0: if INFO = -k, the k-th argument had an illegal value
 | 
						|
*          > 0: if INFO = k, U(k,k) is exactly zero. The factorization
 | 
						|
*               has been completed, but the factor U is exactly
 | 
						|
*               singular, and division by zero will occur if it is used
 | 
						|
*               to solve a system of equations.
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J, JP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      EXTERNAL           IDAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGER, DSCAL, DSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGETF2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      DO 10 J = 1, MIN( M, N )
 | 
						|
*
 | 
						|
*        Find pivot and test for singularity.
 | 
						|
*
 | 
						|
         JP = J - 1 + IDAMAX( M-J+1, A( J, J ), 1 )
 | 
						|
         IPIV( J ) = JP
 | 
						|
         IF( A( JP, J ).NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Apply the interchange to columns 1:N.
 | 
						|
*
 | 
						|
            IF( JP.NE.J )
 | 
						|
     $         CALL DSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
 | 
						|
*
 | 
						|
*           Compute elements J+1:M of J-th column.
 | 
						|
*
 | 
						|
            IF( J.LT.M )
 | 
						|
     $         CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
 | 
						|
*
 | 
						|
         ELSE IF( INFO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
            INFO = J
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( J.LT.MIN( M, N ) ) THEN
 | 
						|
*
 | 
						|
*           Update trailing submatrix.
 | 
						|
*
 | 
						|
            CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,
 | 
						|
     $                 A( J+1, J+1 ), LDA )
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGETF2
 | 
						|
*
 | 
						|
      END
 |