225 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			225 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLASQ1 computes the singular values of a real square bidiagonal matrix. Used by sbdsqr.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLASQ1 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq1.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq1.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq1.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLASQ1( N, D, E, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * ), E( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLASQ1 computes the singular values of a real N-by-N bidiagonal
 | 
						|
*> matrix with diagonal D and off-diagonal E. The singular values
 | 
						|
*> are computed to high relative accuracy, in the absence of
 | 
						|
*> denormalization, underflow and overflow. The algorithm was first
 | 
						|
*> presented in
 | 
						|
*>
 | 
						|
*> "Accurate singular values and differential qd algorithms" by K. V.
 | 
						|
*> Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
 | 
						|
*> 1994,
 | 
						|
*>
 | 
						|
*> and the present implementation is described in "An implementation of
 | 
						|
*> the dqds Algorithm (Positive Case)", LAPACK Working Note.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>        The number of rows and columns in the matrix. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>        On entry, D contains the diagonal elements of the
 | 
						|
*>        bidiagonal matrix whose SVD is desired. On normal exit,
 | 
						|
*>        D contains the singular values in decreasing order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N)
 | 
						|
*>        On entry, elements E(1:N-1) contain the off-diagonal elements
 | 
						|
*>        of the bidiagonal matrix whose SVD is desired.
 | 
						|
*>        On exit, E is overwritten.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (4*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>        = 0: successful exit
 | 
						|
*>        < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>        > 0: the algorithm failed
 | 
						|
*>             = 1, a split was marked by a positive value in E
 | 
						|
*>             = 2, current block of Z not diagonalized after 100*N
 | 
						|
*>                  iterations (in inner while loop)  On exit D and E
 | 
						|
*>                  represent a matrix with the same singular values
 | 
						|
*>                  which the calling subroutine could use to finish the
 | 
						|
*>                  computation, or even feed back into SLASQ1
 | 
						|
*>             = 3, termination criterion of outer while loop not met 
 | 
						|
*>                  (program created more than N unreduced blocks)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLASQ1( N, D, E, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * ), E( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IINFO
 | 
						|
      REAL               EPS, SCALE, SAFMIN, SIGMN, SIGMX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SLAS2, SLASCL, SLASQ2, SLASRT, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
         CALL XERBLA( 'SLASQ1', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( N.EQ.0 ) THEN
 | 
						|
         RETURN
 | 
						|
      ELSE IF( N.EQ.1 ) THEN
 | 
						|
         D( 1 ) = ABS( D( 1 ) )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( N.EQ.2 ) THEN
 | 
						|
         CALL SLAS2( D( 1 ), E( 1 ), D( 2 ), SIGMN, SIGMX )
 | 
						|
         D( 1 ) = SIGMX
 | 
						|
         D( 2 ) = SIGMN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Estimate the largest singular value.
 | 
						|
*
 | 
						|
      SIGMX = ZERO
 | 
						|
      DO 10 I = 1, N - 1
 | 
						|
         D( I ) = ABS( D( I ) )
 | 
						|
         SIGMX = MAX( SIGMX, ABS( E( I ) ) )
 | 
						|
   10 CONTINUE
 | 
						|
      D( N ) = ABS( D( N ) )
 | 
						|
*
 | 
						|
*     Early return if SIGMX is zero (matrix is already diagonal).
 | 
						|
*
 | 
						|
      IF( SIGMX.EQ.ZERO ) THEN
 | 
						|
         CALL SLASRT( 'D', N, D, IINFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DO 20 I = 1, N
 | 
						|
         SIGMX = MAX( SIGMX, D( I ) )
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Copy D and E into WORK (in the Z format) and scale (squaring the
 | 
						|
*     input data makes scaling by a power of the radix pointless).
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Precision' )
 | 
						|
      SAFMIN = SLAMCH( 'Safe minimum' )
 | 
						|
      SCALE = SQRT( EPS / SAFMIN )
 | 
						|
      CALL SCOPY( N, D, 1, WORK( 1 ), 2 )
 | 
						|
      CALL SCOPY( N-1, E, 1, WORK( 2 ), 2 )
 | 
						|
      CALL SLASCL( 'G', 0, 0, SIGMX, SCALE, 2*N-1, 1, WORK, 2*N-1,
 | 
						|
     $             IINFO )
 | 
						|
*         
 | 
						|
*     Compute the q's and e's.
 | 
						|
*
 | 
						|
      DO 30 I = 1, 2*N - 1
 | 
						|
         WORK( I ) = WORK( I )**2
 | 
						|
   30 CONTINUE
 | 
						|
      WORK( 2*N ) = ZERO
 | 
						|
*
 | 
						|
      CALL SLASQ2( N, WORK, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         DO 40 I = 1, N
 | 
						|
            D( I ) = SQRT( WORK( I ) )
 | 
						|
   40    CONTINUE
 | 
						|
         CALL SLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO )
 | 
						|
      ELSE IF( INFO.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*     Maximum number of iterations exceeded.  Move data from WORK
 | 
						|
*     into D and E so the calling subroutine can try to finish
 | 
						|
*
 | 
						|
         DO I = 1, N
 | 
						|
            D( I ) = SQRT( WORK( 2*I-1 ) )
 | 
						|
            E( I ) = SQRT( WORK( 2*I ) )
 | 
						|
         END DO
 | 
						|
         CALL SLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO )
 | 
						|
         CALL SLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, E, N, IINFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLASQ1
 | 
						|
*
 | 
						|
      END
 |