275 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSPGST
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSPGST + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgst.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgst.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgst.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, ITYPE, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   AP( * ), BP( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSPGST reduces a real symmetric-definite generalized eigenproblem
 | 
						|
*> to standard form, using packed storage.
 | 
						|
*>
 | 
						|
*> If ITYPE = 1, the problem is A*x = lambda*B*x,
 | 
						|
*> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
 | 
						|
*>
 | 
						|
*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 | 
						|
*> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
 | 
						|
*>
 | 
						|
*> B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
 | 
						|
*>          = 2 or 3: compute U*A*U**T or L**T*A*L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored and B is factored as
 | 
						|
*>                  U**T*U;
 | 
						|
*>          = 'L':  Lower triangle of A is stored and B is factored as
 | 
						|
*>                  L*L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric matrix
 | 
						|
*>          A, packed columnwise in a linear array.  The j-th column of A
 | 
						|
*>          is stored in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the transformed matrix, stored in the
 | 
						|
*>          same format as A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BP
 | 
						|
*> \verbatim
 | 
						|
*>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          The triangular factor from the Cholesky factorization of B,
 | 
						|
*>          stored in the same format as A, as returned by DPPTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, ITYPE, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   AP( * ), BP( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, HALF
 | 
						|
      PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
 | 
						|
      DOUBLE PRECISION   AJJ, AKK, BJJ, BKK, CT
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DDOT
 | 
						|
      EXTERNAL           LSAME, DDOT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSPGST', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 ) THEN
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Compute inv(U**T)*A*inv(U)
 | 
						|
*
 | 
						|
*           J1 and JJ are the indices of A(1,j) and A(j,j)
 | 
						|
*
 | 
						|
            JJ = 0
 | 
						|
            DO 10 J = 1, N
 | 
						|
               J1 = JJ + 1
 | 
						|
               JJ = JJ + J
 | 
						|
*
 | 
						|
*              Compute the j-th column of the upper triangle of A
 | 
						|
*
 | 
						|
               BJJ = BP( JJ )
 | 
						|
               CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
 | 
						|
     $                     AP( J1 ), 1 )
 | 
						|
               CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
 | 
						|
     $                     AP( J1 ), 1 )
 | 
						|
               CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
 | 
						|
               AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
 | 
						|
     $                    1 ) ) / BJJ
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute inv(L)*A*inv(L**T)
 | 
						|
*
 | 
						|
*           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
 | 
						|
*
 | 
						|
            KK = 1
 | 
						|
            DO 20 K = 1, N
 | 
						|
               K1K1 = KK + N - K + 1
 | 
						|
*
 | 
						|
*              Update the lower triangle of A(k:n,k:n)
 | 
						|
*
 | 
						|
               AKK = AP( KK )
 | 
						|
               BKK = BP( KK )
 | 
						|
               AKK = AKK / BKK**2
 | 
						|
               AP( KK ) = AKK
 | 
						|
               IF( K.LT.N ) THEN
 | 
						|
                  CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
 | 
						|
                  CT = -HALF*AKK
 | 
						|
                  CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
 | 
						|
                  CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
 | 
						|
     $                        BP( KK+1 ), 1, AP( K1K1 ) )
 | 
						|
                  CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
 | 
						|
                  CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
 | 
						|
     $                        BP( K1K1 ), AP( KK+1 ), 1 )
 | 
						|
               END IF
 | 
						|
               KK = K1K1
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Compute U*A*U**T
 | 
						|
*
 | 
						|
*           K1 and KK are the indices of A(1,k) and A(k,k)
 | 
						|
*
 | 
						|
            KK = 0
 | 
						|
            DO 30 K = 1, N
 | 
						|
               K1 = KK + 1
 | 
						|
               KK = KK + K
 | 
						|
*
 | 
						|
*              Update the upper triangle of A(1:k,1:k)
 | 
						|
*
 | 
						|
               AKK = AP( KK )
 | 
						|
               BKK = BP( KK )
 | 
						|
               CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
 | 
						|
     $                     AP( K1 ), 1 )
 | 
						|
               CT = HALF*AKK
 | 
						|
               CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
 | 
						|
               CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
 | 
						|
     $                     AP )
 | 
						|
               CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
 | 
						|
               CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
 | 
						|
               AP( KK ) = AKK*BKK**2
 | 
						|
   30       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute L**T *A*L
 | 
						|
*
 | 
						|
*           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
 | 
						|
*
 | 
						|
            JJ = 1
 | 
						|
            DO 40 J = 1, N
 | 
						|
               J1J1 = JJ + N - J + 1
 | 
						|
*
 | 
						|
*              Compute the j-th column of the lower triangle of A
 | 
						|
*
 | 
						|
               AJJ = AP( JJ )
 | 
						|
               BJJ = BP( JJ )
 | 
						|
               AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
 | 
						|
     $                    BP( JJ+1 ), 1 )
 | 
						|
               CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
 | 
						|
               CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
 | 
						|
     $                     ONE, AP( JJ+1 ), 1 )
 | 
						|
               CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
 | 
						|
     $                     BP( JJ ), AP( JJ ), 1 )
 | 
						|
               JJ = J1J1
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSPGST
 | 
						|
*
 | 
						|
      END
 |