738 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			738 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CTGEVC
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CTGEVC + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgevc.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgevc.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgevc.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
 | 
						|
*                          LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          HOWMNY, SIDE
 | 
						|
*       INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            SELECT( * )
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
 | 
						|
*      $                   VR( LDVR, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CTGEVC computes some or all of the right and/or left eigenvectors of
 | 
						|
*> a pair of complex matrices (S,P), where S and P are upper triangular.
 | 
						|
*> Matrix pairs of this type are produced by the generalized Schur
 | 
						|
*> factorization of a complex matrix pair (A,B):
 | 
						|
*> 
 | 
						|
*>    A = Q*S*Z**H,  B = Q*P*Z**H
 | 
						|
*> 
 | 
						|
*> as computed by CGGHRD + CHGEQZ.
 | 
						|
*> 
 | 
						|
*> The right eigenvector x and the left eigenvector y of (S,P)
 | 
						|
*> corresponding to an eigenvalue w are defined by:
 | 
						|
*> 
 | 
						|
*>    S*x = w*P*x,  (y**H)*S = w*(y**H)*P,
 | 
						|
*> 
 | 
						|
*> where y**H denotes the conjugate tranpose of y.
 | 
						|
*> The eigenvalues are not input to this routine, but are computed
 | 
						|
*> directly from the diagonal elements of S and P.
 | 
						|
*> 
 | 
						|
*> This routine returns the matrices X and/or Y of right and left
 | 
						|
*> eigenvectors of (S,P), or the products Z*X and/or Q*Y,
 | 
						|
*> where Z and Q are input matrices.
 | 
						|
*> If Q and Z are the unitary factors from the generalized Schur
 | 
						|
*> factorization of a matrix pair (A,B), then Z*X and Q*Y
 | 
						|
*> are the matrices of right and left eigenvectors of (A,B).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'R': compute right eigenvectors only;
 | 
						|
*>          = 'L': compute left eigenvectors only;
 | 
						|
*>          = 'B': compute both right and left eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] HOWMNY
 | 
						|
*> \verbatim
 | 
						|
*>          HOWMNY is CHARACTER*1
 | 
						|
*>          = 'A': compute all right and/or left eigenvectors;
 | 
						|
*>          = 'B': compute all right and/or left eigenvectors,
 | 
						|
*>                 backtransformed by the matrices in VR and/or VL;
 | 
						|
*>          = 'S': compute selected right and/or left eigenvectors,
 | 
						|
*>                 specified by the logical array SELECT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SELECT
 | 
						|
*> \verbatim
 | 
						|
*>          SELECT is LOGICAL array, dimension (N)
 | 
						|
*>          If HOWMNY='S', SELECT specifies the eigenvectors to be
 | 
						|
*>          computed.  The eigenvector corresponding to the j-th
 | 
						|
*>          eigenvalue is computed if SELECT(j) = .TRUE..
 | 
						|
*>          Not referenced if HOWMNY = 'A' or 'B'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices S and P.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is COMPLEX array, dimension (LDS,N)
 | 
						|
*>          The upper triangular matrix S from a generalized Schur
 | 
						|
*>          factorization, as computed by CHGEQZ.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDS
 | 
						|
*> \verbatim
 | 
						|
*>          LDS is INTEGER
 | 
						|
*>          The leading dimension of array S.  LDS >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is COMPLEX array, dimension (LDP,N)
 | 
						|
*>          The upper triangular matrix P from a generalized Schur
 | 
						|
*>          factorization, as computed by CHGEQZ.  P must have real
 | 
						|
*>          diagonal elements.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDP
 | 
						|
*> \verbatim
 | 
						|
*>          LDP is INTEGER
 | 
						|
*>          The leading dimension of array P.  LDP >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is COMPLEX array, dimension (LDVL,MM)
 | 
						|
*>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
 | 
						|
*>          contain an N-by-N matrix Q (usually the unitary matrix Q
 | 
						|
*>          of left Schur vectors returned by CHGEQZ).
 | 
						|
*>          On exit, if SIDE = 'L' or 'B', VL contains:
 | 
						|
*>          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
 | 
						|
*>          if HOWMNY = 'B', the matrix Q*Y;
 | 
						|
*>          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
 | 
						|
*>                      SELECT, stored consecutively in the columns of
 | 
						|
*>                      VL, in the same order as their eigenvalues.
 | 
						|
*>          Not referenced if SIDE = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of array VL.  LDVL >= 1, and if
 | 
						|
*>          SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is COMPLEX array, dimension (LDVR,MM)
 | 
						|
*>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
 | 
						|
*>          contain an N-by-N matrix Q (usually the unitary matrix Z
 | 
						|
*>          of right Schur vectors returned by CHGEQZ).
 | 
						|
*>          On exit, if SIDE = 'R' or 'B', VR contains:
 | 
						|
*>          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
 | 
						|
*>          if HOWMNY = 'B', the matrix Z*X;
 | 
						|
*>          if HOWMNY = 'S', the right eigenvectors of (S,P) specified by
 | 
						|
*>                      SELECT, stored consecutively in the columns of
 | 
						|
*>                      VR, in the same order as their eigenvalues.
 | 
						|
*>          Not referenced if SIDE = 'L'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the array VR.  LDVR >= 1, and if
 | 
						|
*>          SIDE = 'R' or 'B', LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MM
 | 
						|
*> \verbatim
 | 
						|
*>          MM is INTEGER
 | 
						|
*>          The number of columns in the arrays VL and/or VR. MM >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of columns in the arrays VL and/or VR actually
 | 
						|
*>          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
 | 
						|
*>          is set to N.  Each selected eigenvector occupies one column.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
 | 
						|
     $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          HOWMNY, SIDE
 | 
						|
      INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            SELECT( * )
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
 | 
						|
     $                   VR( LDVR, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            COMPL, COMPR, ILALL, ILBACK, ILBBAD, ILCOMP,
 | 
						|
     $                   LSA, LSB
 | 
						|
      INTEGER            I, IBEG, IEIG, IEND, IHWMNY, IM, ISIDE, ISRC,
 | 
						|
     $                   J, JE, JR
 | 
						|
      REAL               ACOEFA, ACOEFF, ANORM, ASCALE, BCOEFA, BIG,
 | 
						|
     $                   BIGNUM, BNORM, BSCALE, DMIN, SAFMIN, SBETA,
 | 
						|
     $                   SCALE, SMALL, TEMP, ULP, XMAX
 | 
						|
      COMPLEX            BCOEFF, CA, CB, D, SALPHA, SUM, SUMA, SUMB, X
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLAMCH
 | 
						|
      COMPLEX            CLADIV
 | 
						|
      EXTERNAL           LSAME, SLAMCH, CLADIV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV, SLABAD, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               ABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and Test the input parameters
 | 
						|
*
 | 
						|
      IF( LSAME( HOWMNY, 'A' ) ) THEN
 | 
						|
         IHWMNY = 1
 | 
						|
         ILALL = .TRUE.
 | 
						|
         ILBACK = .FALSE.
 | 
						|
      ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
 | 
						|
         IHWMNY = 2
 | 
						|
         ILALL = .FALSE.
 | 
						|
         ILBACK = .FALSE.
 | 
						|
      ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN
 | 
						|
         IHWMNY = 3
 | 
						|
         ILALL = .TRUE.
 | 
						|
         ILBACK = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IHWMNY = -1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
         ISIDE = 1
 | 
						|
         COMPL = .FALSE.
 | 
						|
         COMPR = .TRUE.
 | 
						|
      ELSE IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
         ISIDE = 2
 | 
						|
         COMPL = .TRUE.
 | 
						|
         COMPR = .FALSE.
 | 
						|
      ELSE IF( LSAME( SIDE, 'B' ) ) THEN
 | 
						|
         ISIDE = 3
 | 
						|
         COMPL = .TRUE.
 | 
						|
         COMPR = .TRUE.
 | 
						|
      ELSE
 | 
						|
         ISIDE = -1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( ISIDE.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( IHWMNY.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDP.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CTGEVC', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Count the number of eigenvectors
 | 
						|
*
 | 
						|
      IF( .NOT.ILALL ) THEN
 | 
						|
         IM = 0
 | 
						|
         DO 10 J = 1, N
 | 
						|
            IF( SELECT( J ) )
 | 
						|
     $         IM = IM + 1
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         IM = N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check diagonal of B
 | 
						|
*
 | 
						|
      ILBBAD = .FALSE.
 | 
						|
      DO 20 J = 1, N
 | 
						|
         IF( AIMAG( P( J, J ) ).NE.ZERO )
 | 
						|
     $      ILBBAD = .TRUE.
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      IF( ILBBAD ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( COMPL .AND. LDVL.LT.N .OR. LDVL.LT.1 ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( COMPR .AND. LDVR.LT.N .OR. LDVR.LT.1 ) THEN
 | 
						|
         INFO = -12
 | 
						|
      ELSE IF( MM.LT.IM ) THEN
 | 
						|
         INFO = -13
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CTGEVC', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      M = IM
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Machine Constants
 | 
						|
*
 | 
						|
      SAFMIN = SLAMCH( 'Safe minimum' )
 | 
						|
      BIG = ONE / SAFMIN
 | 
						|
      CALL SLABAD( SAFMIN, BIG )
 | 
						|
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | 
						|
      SMALL = SAFMIN*N / ULP
 | 
						|
      BIG = ONE / SMALL
 | 
						|
      BIGNUM = ONE / ( SAFMIN*N )
 | 
						|
*
 | 
						|
*     Compute the 1-norm of each column of the strictly upper triangular
 | 
						|
*     part of A and B to check for possible overflow in the triangular
 | 
						|
*     solver.
 | 
						|
*
 | 
						|
      ANORM = ABS1( S( 1, 1 ) )
 | 
						|
      BNORM = ABS1( P( 1, 1 ) )
 | 
						|
      RWORK( 1 ) = ZERO
 | 
						|
      RWORK( N+1 ) = ZERO
 | 
						|
      DO 40 J = 2, N
 | 
						|
         RWORK( J ) = ZERO
 | 
						|
         RWORK( N+J ) = ZERO
 | 
						|
         DO 30 I = 1, J - 1
 | 
						|
            RWORK( J ) = RWORK( J ) + ABS1( S( I, J ) )
 | 
						|
            RWORK( N+J ) = RWORK( N+J ) + ABS1( P( I, J ) )
 | 
						|
   30    CONTINUE
 | 
						|
         ANORM = MAX( ANORM, RWORK( J )+ABS1( S( J, J ) ) )
 | 
						|
         BNORM = MAX( BNORM, RWORK( N+J )+ABS1( P( J, J ) ) )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      ASCALE = ONE / MAX( ANORM, SAFMIN )
 | 
						|
      BSCALE = ONE / MAX( BNORM, SAFMIN )
 | 
						|
*
 | 
						|
*     Left eigenvectors
 | 
						|
*
 | 
						|
      IF( COMPL ) THEN
 | 
						|
         IEIG = 0
 | 
						|
*
 | 
						|
*        Main loop over eigenvalues
 | 
						|
*
 | 
						|
         DO 140 JE = 1, N
 | 
						|
            IF( ILALL ) THEN
 | 
						|
               ILCOMP = .TRUE.
 | 
						|
            ELSE
 | 
						|
               ILCOMP = SELECT( JE )
 | 
						|
            END IF
 | 
						|
            IF( ILCOMP ) THEN
 | 
						|
               IEIG = IEIG + 1
 | 
						|
*
 | 
						|
               IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
 | 
						|
     $             ABS( REAL( P( JE, JE ) ) ).LE.SAFMIN ) THEN
 | 
						|
*
 | 
						|
*                 Singular matrix pencil -- return unit eigenvector
 | 
						|
*
 | 
						|
                  DO 50 JR = 1, N
 | 
						|
                     VL( JR, IEIG ) = CZERO
 | 
						|
   50             CONTINUE
 | 
						|
                  VL( IEIG, IEIG ) = CONE
 | 
						|
                  GO TO 140
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Non-singular eigenvalue:
 | 
						|
*              Compute coefficients  a  and  b  in
 | 
						|
*                   H
 | 
						|
*                 y  ( a A - b B ) = 0
 | 
						|
*
 | 
						|
               TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
 | 
						|
     $                ABS( REAL( P( JE, JE ) ) )*BSCALE, SAFMIN )
 | 
						|
               SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
 | 
						|
               SBETA = ( TEMP*REAL( P( JE, JE ) ) )*BSCALE
 | 
						|
               ACOEFF = SBETA*ASCALE
 | 
						|
               BCOEFF = SALPHA*BSCALE
 | 
						|
*
 | 
						|
*              Scale to avoid underflow
 | 
						|
*
 | 
						|
               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
 | 
						|
               LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
 | 
						|
     $               SMALL
 | 
						|
*
 | 
						|
               SCALE = ONE
 | 
						|
               IF( LSA )
 | 
						|
     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
 | 
						|
               IF( LSB )
 | 
						|
     $            SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
 | 
						|
     $                    MIN( BNORM, BIG ) )
 | 
						|
               IF( LSA .OR. LSB ) THEN
 | 
						|
                  SCALE = MIN( SCALE, ONE /
 | 
						|
     $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
 | 
						|
     $                    ABS1( BCOEFF ) ) ) )
 | 
						|
                  IF( LSA ) THEN
 | 
						|
                     ACOEFF = ASCALE*( SCALE*SBETA )
 | 
						|
                  ELSE
 | 
						|
                     ACOEFF = SCALE*ACOEFF
 | 
						|
                  END IF
 | 
						|
                  IF( LSB ) THEN
 | 
						|
                     BCOEFF = BSCALE*( SCALE*SALPHA )
 | 
						|
                  ELSE
 | 
						|
                     BCOEFF = SCALE*BCOEFF
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               ACOEFA = ABS( ACOEFF )
 | 
						|
               BCOEFA = ABS1( BCOEFF )
 | 
						|
               XMAX = ONE
 | 
						|
               DO 60 JR = 1, N
 | 
						|
                  WORK( JR ) = CZERO
 | 
						|
   60          CONTINUE
 | 
						|
               WORK( JE ) = CONE
 | 
						|
               DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
 | 
						|
*
 | 
						|
*                                              H
 | 
						|
*              Triangular solve of  (a A - b B)  y = 0
 | 
						|
*
 | 
						|
*                                      H
 | 
						|
*              (rowwise in  (a A - b B) , or columnwise in a A - b B)
 | 
						|
*
 | 
						|
               DO 100 J = JE + 1, N
 | 
						|
*
 | 
						|
*                 Compute
 | 
						|
*                       j-1
 | 
						|
*                 SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k)
 | 
						|
*                       k=je
 | 
						|
*                 (Scale if necessary)
 | 
						|
*
 | 
						|
                  TEMP = ONE / XMAX
 | 
						|
                  IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GT.BIGNUM*
 | 
						|
     $                TEMP ) THEN
 | 
						|
                     DO 70 JR = JE, J - 1
 | 
						|
                        WORK( JR ) = TEMP*WORK( JR )
 | 
						|
   70                CONTINUE
 | 
						|
                     XMAX = ONE
 | 
						|
                  END IF
 | 
						|
                  SUMA = CZERO
 | 
						|
                  SUMB = CZERO
 | 
						|
*
 | 
						|
                  DO 80 JR = JE, J - 1
 | 
						|
                     SUMA = SUMA + CONJG( S( JR, J ) )*WORK( JR )
 | 
						|
                     SUMB = SUMB + CONJG( P( JR, J ) )*WORK( JR )
 | 
						|
   80             CONTINUE
 | 
						|
                  SUM = ACOEFF*SUMA - CONJG( BCOEFF )*SUMB
 | 
						|
*
 | 
						|
*                 Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) )
 | 
						|
*
 | 
						|
*                 with scaling and perturbation of the denominator
 | 
						|
*
 | 
						|
                  D = CONJG( ACOEFF*S( J, J )-BCOEFF*P( J, J ) )
 | 
						|
                  IF( ABS1( D ).LE.DMIN )
 | 
						|
     $               D = CMPLX( DMIN )
 | 
						|
*
 | 
						|
                  IF( ABS1( D ).LT.ONE ) THEN
 | 
						|
                     IF( ABS1( SUM ).GE.BIGNUM*ABS1( D ) ) THEN
 | 
						|
                        TEMP = ONE / ABS1( SUM )
 | 
						|
                        DO 90 JR = JE, J - 1
 | 
						|
                           WORK( JR ) = TEMP*WORK( JR )
 | 
						|
   90                   CONTINUE
 | 
						|
                        XMAX = TEMP*XMAX
 | 
						|
                        SUM = TEMP*SUM
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
                  WORK( J ) = CLADIV( -SUM, D )
 | 
						|
                  XMAX = MAX( XMAX, ABS1( WORK( J ) ) )
 | 
						|
  100          CONTINUE
 | 
						|
*
 | 
						|
*              Back transform eigenvector if HOWMNY='B'.
 | 
						|
*
 | 
						|
               IF( ILBACK ) THEN
 | 
						|
                  CALL CGEMV( 'N', N, N+1-JE, CONE, VL( 1, JE ), LDVL,
 | 
						|
     $                        WORK( JE ), 1, CZERO, WORK( N+1 ), 1 )
 | 
						|
                  ISRC = 2
 | 
						|
                  IBEG = 1
 | 
						|
               ELSE
 | 
						|
                  ISRC = 1
 | 
						|
                  IBEG = JE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Copy and scale eigenvector into column of VL
 | 
						|
*
 | 
						|
               XMAX = ZERO
 | 
						|
               DO 110 JR = IBEG, N
 | 
						|
                  XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
 | 
						|
  110          CONTINUE
 | 
						|
*
 | 
						|
               IF( XMAX.GT.SAFMIN ) THEN
 | 
						|
                  TEMP = ONE / XMAX
 | 
						|
                  DO 120 JR = IBEG, N
 | 
						|
                     VL( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
 | 
						|
  120             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  IBEG = N + 1
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               DO 130 JR = 1, IBEG - 1
 | 
						|
                  VL( JR, IEIG ) = CZERO
 | 
						|
  130          CONTINUE
 | 
						|
*
 | 
						|
            END IF
 | 
						|
  140    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Right eigenvectors
 | 
						|
*
 | 
						|
      IF( COMPR ) THEN
 | 
						|
         IEIG = IM + 1
 | 
						|
*
 | 
						|
*        Main loop over eigenvalues
 | 
						|
*
 | 
						|
         DO 250 JE = N, 1, -1
 | 
						|
            IF( ILALL ) THEN
 | 
						|
               ILCOMP = .TRUE.
 | 
						|
            ELSE
 | 
						|
               ILCOMP = SELECT( JE )
 | 
						|
            END IF
 | 
						|
            IF( ILCOMP ) THEN
 | 
						|
               IEIG = IEIG - 1
 | 
						|
*
 | 
						|
               IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
 | 
						|
     $             ABS( REAL( P( JE, JE ) ) ).LE.SAFMIN ) THEN
 | 
						|
*
 | 
						|
*                 Singular matrix pencil -- return unit eigenvector
 | 
						|
*
 | 
						|
                  DO 150 JR = 1, N
 | 
						|
                     VR( JR, IEIG ) = CZERO
 | 
						|
  150             CONTINUE
 | 
						|
                  VR( IEIG, IEIG ) = CONE
 | 
						|
                  GO TO 250
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Non-singular eigenvalue:
 | 
						|
*              Compute coefficients  a  and  b  in
 | 
						|
*
 | 
						|
*              ( a A - b B ) x  = 0
 | 
						|
*
 | 
						|
               TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
 | 
						|
     $                ABS( REAL( P( JE, JE ) ) )*BSCALE, SAFMIN )
 | 
						|
               SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
 | 
						|
               SBETA = ( TEMP*REAL( P( JE, JE ) ) )*BSCALE
 | 
						|
               ACOEFF = SBETA*ASCALE
 | 
						|
               BCOEFF = SALPHA*BSCALE
 | 
						|
*
 | 
						|
*              Scale to avoid underflow
 | 
						|
*
 | 
						|
               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
 | 
						|
               LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
 | 
						|
     $               SMALL
 | 
						|
*
 | 
						|
               SCALE = ONE
 | 
						|
               IF( LSA )
 | 
						|
     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
 | 
						|
               IF( LSB )
 | 
						|
     $            SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
 | 
						|
     $                    MIN( BNORM, BIG ) )
 | 
						|
               IF( LSA .OR. LSB ) THEN
 | 
						|
                  SCALE = MIN( SCALE, ONE /
 | 
						|
     $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
 | 
						|
     $                    ABS1( BCOEFF ) ) ) )
 | 
						|
                  IF( LSA ) THEN
 | 
						|
                     ACOEFF = ASCALE*( SCALE*SBETA )
 | 
						|
                  ELSE
 | 
						|
                     ACOEFF = SCALE*ACOEFF
 | 
						|
                  END IF
 | 
						|
                  IF( LSB ) THEN
 | 
						|
                     BCOEFF = BSCALE*( SCALE*SALPHA )
 | 
						|
                  ELSE
 | 
						|
                     BCOEFF = SCALE*BCOEFF
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               ACOEFA = ABS( ACOEFF )
 | 
						|
               BCOEFA = ABS1( BCOEFF )
 | 
						|
               XMAX = ONE
 | 
						|
               DO 160 JR = 1, N
 | 
						|
                  WORK( JR ) = CZERO
 | 
						|
  160          CONTINUE
 | 
						|
               WORK( JE ) = CONE
 | 
						|
               DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
 | 
						|
*
 | 
						|
*              Triangular solve of  (a A - b B) x = 0  (columnwise)
 | 
						|
*
 | 
						|
*              WORK(1:j-1) contains sums w,
 | 
						|
*              WORK(j+1:JE) contains x
 | 
						|
*
 | 
						|
               DO 170 JR = 1, JE - 1
 | 
						|
                  WORK( JR ) = ACOEFF*S( JR, JE ) - BCOEFF*P( JR, JE )
 | 
						|
  170          CONTINUE
 | 
						|
               WORK( JE ) = CONE
 | 
						|
*
 | 
						|
               DO 210 J = JE - 1, 1, -1
 | 
						|
*
 | 
						|
*                 Form x(j) := - w(j) / d
 | 
						|
*                 with scaling and perturbation of the denominator
 | 
						|
*
 | 
						|
                  D = ACOEFF*S( J, J ) - BCOEFF*P( J, J )
 | 
						|
                  IF( ABS1( D ).LE.DMIN )
 | 
						|
     $               D = CMPLX( DMIN )
 | 
						|
*
 | 
						|
                  IF( ABS1( D ).LT.ONE ) THEN
 | 
						|
                     IF( ABS1( WORK( J ) ).GE.BIGNUM*ABS1( D ) ) THEN
 | 
						|
                        TEMP = ONE / ABS1( WORK( J ) )
 | 
						|
                        DO 180 JR = 1, JE
 | 
						|
                           WORK( JR ) = TEMP*WORK( JR )
 | 
						|
  180                   CONTINUE
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  WORK( J ) = CLADIV( -WORK( J ), D )
 | 
						|
*
 | 
						|
                  IF( J.GT.1 ) THEN
 | 
						|
*
 | 
						|
*                    w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling
 | 
						|
*
 | 
						|
                     IF( ABS1( WORK( J ) ).GT.ONE ) THEN
 | 
						|
                        TEMP = ONE / ABS1( WORK( J ) )
 | 
						|
                        IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GE.
 | 
						|
     $                      BIGNUM*TEMP ) THEN
 | 
						|
                           DO 190 JR = 1, JE
 | 
						|
                              WORK( JR ) = TEMP*WORK( JR )
 | 
						|
  190                      CONTINUE
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     CA = ACOEFF*WORK( J )
 | 
						|
                     CB = BCOEFF*WORK( J )
 | 
						|
                     DO 200 JR = 1, J - 1
 | 
						|
                        WORK( JR ) = WORK( JR ) + CA*S( JR, J ) -
 | 
						|
     $                               CB*P( JR, J )
 | 
						|
  200                CONTINUE
 | 
						|
                  END IF
 | 
						|
  210          CONTINUE
 | 
						|
*
 | 
						|
*              Back transform eigenvector if HOWMNY='B'.
 | 
						|
*
 | 
						|
               IF( ILBACK ) THEN
 | 
						|
                  CALL CGEMV( 'N', N, JE, CONE, VR, LDVR, WORK, 1,
 | 
						|
     $                        CZERO, WORK( N+1 ), 1 )
 | 
						|
                  ISRC = 2
 | 
						|
                  IEND = N
 | 
						|
               ELSE
 | 
						|
                  ISRC = 1
 | 
						|
                  IEND = JE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Copy and scale eigenvector into column of VR
 | 
						|
*
 | 
						|
               XMAX = ZERO
 | 
						|
               DO 220 JR = 1, IEND
 | 
						|
                  XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
 | 
						|
  220          CONTINUE
 | 
						|
*
 | 
						|
               IF( XMAX.GT.SAFMIN ) THEN
 | 
						|
                  TEMP = ONE / XMAX
 | 
						|
                  DO 230 JR = 1, IEND
 | 
						|
                     VR( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
 | 
						|
  230             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  IEND = 0
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               DO 240 JR = IEND + 1, N
 | 
						|
                  VR( JR, IEIG ) = CZERO
 | 
						|
  240          CONTINUE
 | 
						|
*
 | 
						|
            END IF
 | 
						|
  250    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CTGEVC
 | 
						|
*
 | 
						|
      END
 |