147 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			147 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLARND
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       COMPLEX*16   FUNCTION ZLARND( IDIST, ISEED )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IDIST
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISEED( 4 )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLARND returns a random complex number from a uniform or normal
 | |
| *> distribution.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IDIST
 | |
| *> \verbatim
 | |
| *>          IDIST is INTEGER
 | |
| *>          Specifies the distribution of the random numbers:
 | |
| *>          = 1:  real and imaginary parts each uniform (0,1)
 | |
| *>          = 2:  real and imaginary parts each uniform (-1,1)
 | |
| *>          = 3:  real and imaginary parts each normal (0,1)
 | |
| *>          = 4:  uniformly distributed on the disc abs(z) <= 1
 | |
| *>          = 5:  uniformly distributed on the circle abs(z) = 1
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry, the seed of the random number generator; the array
 | |
| *>          elements must be between 0 and 4095, and ISEED(4) must be
 | |
| *>          odd.
 | |
| *>          On exit, the seed is updated.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16_matgen
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  This routine calls the auxiliary routine DLARAN to generate a random
 | |
| *>  real number from a uniform (0,1) distribution. The Box-Muller method
 | |
| *>  is used to transform numbers from a uniform to a normal distribution.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       COMPLEX*16   FUNCTION ZLARND( IDIST, ISEED )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IDIST
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISEED( 4 )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
 | |
|       DOUBLE PRECISION   TWOPI
 | |
|       PARAMETER          ( TWOPI = 6.2831853071795864769252867663D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   T1, T2
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLARAN
 | |
|       EXTERNAL           DLARAN
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DCMPLX, EXP, LOG, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Generate a pair of real random numbers from a uniform (0,1)
 | |
| *     distribution
 | |
| *
 | |
|       T1 = DLARAN( ISEED )
 | |
|       T2 = DLARAN( ISEED )
 | |
| *
 | |
|       IF( IDIST.EQ.1 ) THEN
 | |
| *
 | |
| *        real and imaginary parts each uniform (0,1)
 | |
| *
 | |
|          ZLARND = DCMPLX( T1, T2 )
 | |
|       ELSE IF( IDIST.EQ.2 ) THEN
 | |
| *
 | |
| *        real and imaginary parts each uniform (-1,1)
 | |
| *
 | |
|          ZLARND = DCMPLX( TWO*T1-ONE, TWO*T2-ONE )
 | |
|       ELSE IF( IDIST.EQ.3 ) THEN
 | |
| *
 | |
| *        real and imaginary parts each normal (0,1)
 | |
| *
 | |
|          ZLARND = SQRT( -TWO*LOG( T1 ) )*EXP( DCMPLX( ZERO, TWOPI*T2 ) )
 | |
|       ELSE IF( IDIST.EQ.4 ) THEN
 | |
| *
 | |
| *        uniform distribution on the unit disc abs(z) <= 1
 | |
| *
 | |
|          ZLARND = SQRT( T1 )*EXP( DCMPLX( ZERO, TWOPI*T2 ) )
 | |
|       ELSE IF( IDIST.EQ.5 ) THEN
 | |
| *
 | |
| *        uniform distribution on the unit circle abs(z) = 1
 | |
| *
 | |
|          ZLARND = EXP( DCMPLX( ZERO, TWOPI*T2 ) )
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLARND
 | |
| *
 | |
|       END
 |