372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAGGE
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, KL, KU, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISEED( 4 )
 | |
| *       REAL               D( * )
 | |
| *       COMPLEX            A( LDA, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLAGGE generates a complex general m by n matrix A, by pre- and post-
 | |
| *> multiplying a real diagonal matrix D with random unitary matrices:
 | |
| *> A = U*D*V. The lower and upper bandwidths may then be reduced to
 | |
| *> kl and ku by additional unitary transformations.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of nonzero subdiagonals within the band of A.
 | |
| *>          0 <= KL <= M-1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of nonzero superdiagonals within the band of A.
 | |
| *>          0 <= KU <= N-1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (min(M,N))
 | |
| *>          The diagonal elements of the diagonal matrix D.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The generated m by n matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry, the seed of the random number generator; the array
 | |
| *>          elements must be between 0 and 4095, and ISEED(4) must be
 | |
| *>          odd.
 | |
| *>          On exit, the seed is updated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (M+N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex_matgen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, KL, KU, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISEED( 4 )
 | |
|       REAL               D( * )
 | |
|       COMPLEX            A( LDA, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ZERO, ONE
 | |
|       PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   ONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       REAL               WN
 | |
|       COMPLEX            TAU, WA, WB
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMV, CGERC, CLACGV, CLARNV, CSCAL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SCNRM2
 | |
|       EXTERNAL           SCNRM2
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.LT.0 ) THEN
 | |
|          CALL XERBLA( 'CLAGGE', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     initialize A to diagonal matrix
 | |
| *
 | |
|       DO 20 J = 1, N
 | |
|          DO 10 I = 1, M
 | |
|             A( I, J ) = ZERO
 | |
|    10    CONTINUE
 | |
|    20 CONTINUE
 | |
|       DO 30 I = 1, MIN( M, N )
 | |
|          A( I, I ) = D( I )
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Quick exit if the user wants a diagonal matrix
 | |
| *
 | |
|       IF(( KL .EQ. 0 ).AND.( KU .EQ. 0)) RETURN
 | |
| *
 | |
| *     pre- and post-multiply A by random unitary matrices
 | |
| *
 | |
|       DO 40 I = MIN( M, N ), 1, -1
 | |
|          IF( I.LT.M ) THEN
 | |
| *
 | |
| *           generate random reflection
 | |
| *
 | |
|             CALL CLARNV( 3, ISEED, M-I+1, WORK )
 | |
|             WN = SCNRM2( M-I+1, WORK, 1 )
 | |
|             WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
 | |
|             IF( WN.EQ.ZERO ) THEN
 | |
|                TAU = ZERO
 | |
|             ELSE
 | |
|                WB = WORK( 1 ) + WA
 | |
|                CALL CSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
 | |
|                WORK( 1 ) = ONE
 | |
|                TAU = REAL( WB / WA )
 | |
|             END IF
 | |
| *
 | |
| *           multiply A(i:m,i:n) by random reflection from the left
 | |
| *
 | |
|             CALL CGEMV( 'Conjugate transpose', M-I+1, N-I+1, ONE,
 | |
|      $                  A( I, I ), LDA, WORK, 1, ZERO, WORK( M+1 ), 1 )
 | |
|             CALL CGERC( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1,
 | |
|      $                  A( I, I ), LDA )
 | |
|          END IF
 | |
|          IF( I.LT.N ) THEN
 | |
| *
 | |
| *           generate random reflection
 | |
| *
 | |
|             CALL CLARNV( 3, ISEED, N-I+1, WORK )
 | |
|             WN = SCNRM2( N-I+1, WORK, 1 )
 | |
|             WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
 | |
|             IF( WN.EQ.ZERO ) THEN
 | |
|                TAU = ZERO
 | |
|             ELSE
 | |
|                WB = WORK( 1 ) + WA
 | |
|                CALL CSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
 | |
|                WORK( 1 ) = ONE
 | |
|                TAU = REAL( WB / WA )
 | |
|             END IF
 | |
| *
 | |
| *           multiply A(i:m,i:n) by random reflection from the right
 | |
| *
 | |
|             CALL CGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
 | |
|      $                  LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
 | |
|             CALL CGERC( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1,
 | |
|      $                  A( I, I ), LDA )
 | |
|          END IF
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Reduce number of subdiagonals to KL and number of superdiagonals
 | |
| *     to KU
 | |
| *
 | |
|       DO 70 I = 1, MAX( M-1-KL, N-1-KU )
 | |
|          IF( KL.LE.KU ) THEN
 | |
| *
 | |
| *           annihilate subdiagonal elements first (necessary if KL = 0)
 | |
| *
 | |
|             IF( I.LE.MIN( M-1-KL, N ) ) THEN
 | |
| *
 | |
| *              generate reflection to annihilate A(kl+i+1:m,i)
 | |
| *
 | |
|                WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
 | |
|                WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
 | |
|                IF( WN.EQ.ZERO ) THEN
 | |
|                   TAU = ZERO
 | |
|                ELSE
 | |
|                   WB = A( KL+I, I ) + WA
 | |
|                   CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
 | |
|                   A( KL+I, I ) = ONE
 | |
|                   TAU = REAL( WB / WA )
 | |
|                END IF
 | |
| *
 | |
| *              apply reflection to A(kl+i:m,i+1:n) from the left
 | |
| *
 | |
|                CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
 | |
|      $                     A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
 | |
|      $                     WORK, 1 )
 | |
|                CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
 | |
|      $                     1, A( KL+I, I+1 ), LDA )
 | |
|                A( KL+I, I ) = -WA
 | |
|             END IF
 | |
| *
 | |
|             IF( I.LE.MIN( N-1-KU, M ) ) THEN
 | |
| *
 | |
| *              generate reflection to annihilate A(i,ku+i+1:n)
 | |
| *
 | |
|                WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
 | |
|                WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
 | |
|                IF( WN.EQ.ZERO ) THEN
 | |
|                   TAU = ZERO
 | |
|                ELSE
 | |
|                   WB = A( I, KU+I ) + WA
 | |
|                   CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
 | |
|                   A( I, KU+I ) = ONE
 | |
|                   TAU = REAL( WB / WA )
 | |
|                END IF
 | |
| *
 | |
| *              apply reflection to A(i+1:m,ku+i:n) from the right
 | |
| *
 | |
|                CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
 | |
|                CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
 | |
|      $                     A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
 | |
|      $                     WORK, 1 )
 | |
|                CALL CGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
 | |
|      $                     LDA, A( I+1, KU+I ), LDA )
 | |
|                A( I, KU+I ) = -WA
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           annihilate superdiagonal elements first (necessary if
 | |
| *           KU = 0)
 | |
| *
 | |
|             IF( I.LE.MIN( N-1-KU, M ) ) THEN
 | |
| *
 | |
| *              generate reflection to annihilate A(i,ku+i+1:n)
 | |
| *
 | |
|                WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
 | |
|                WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
 | |
|                IF( WN.EQ.ZERO ) THEN
 | |
|                   TAU = ZERO
 | |
|                ELSE
 | |
|                   WB = A( I, KU+I ) + WA
 | |
|                   CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
 | |
|                   A( I, KU+I ) = ONE
 | |
|                   TAU = REAL( WB / WA )
 | |
|                END IF
 | |
| *
 | |
| *              apply reflection to A(i+1:m,ku+i:n) from the right
 | |
| *
 | |
|                CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
 | |
|                CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
 | |
|      $                     A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
 | |
|      $                     WORK, 1 )
 | |
|                CALL CGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
 | |
|      $                     LDA, A( I+1, KU+I ), LDA )
 | |
|                A( I, KU+I ) = -WA
 | |
|             END IF
 | |
| *
 | |
|             IF( I.LE.MIN( M-1-KL, N ) ) THEN
 | |
| *
 | |
| *              generate reflection to annihilate A(kl+i+1:m,i)
 | |
| *
 | |
|                WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
 | |
|                WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
 | |
|                IF( WN.EQ.ZERO ) THEN
 | |
|                   TAU = ZERO
 | |
|                ELSE
 | |
|                   WB = A( KL+I, I ) + WA
 | |
|                   CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
 | |
|                   A( KL+I, I ) = ONE
 | |
|                   TAU = REAL( WB / WA )
 | |
|                END IF
 | |
| *
 | |
| *              apply reflection to A(kl+i:m,i+1:n) from the left
 | |
| *
 | |
|                CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
 | |
|      $                     A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
 | |
|      $                     WORK, 1 )
 | |
|                CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
 | |
|      $                     1, A( KL+I, I+1 ), LDA )
 | |
|                A( KL+I, I ) = -WA
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          IF (I .LE. N) THEN
 | |
|             DO 50 J = KL + I + 1, M
 | |
|                A( J, I ) = ZERO
 | |
|    50       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          IF (I .LE. M) THEN
 | |
|             DO 60 J = KU + I + 1, N
 | |
|                A( I, J ) = ZERO
 | |
|    60       CONTINUE
 | |
|          END IF
 | |
|    70 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAGGE
 | |
| *
 | |
|       END
 |