466 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			466 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGGSVD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
 | |
| *                          LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
 | |
| *                          RWORK, IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBQ, JOBU, JOBV
 | |
| *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   ALPHA( * ), BETA( * ), RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
| *      $                   U( LDU, * ), V( LDV, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> This routine is deprecated and has been replaced by routine ZGGSVD3.
 | |
| *>
 | |
| *> ZGGSVD computes the generalized singular value decomposition (GSVD)
 | |
| *> of an M-by-N complex matrix A and P-by-N complex matrix B:
 | |
| *>
 | |
| *>       U**H*A*Q = D1*( 0 R ),    V**H*B*Q = D2*( 0 R )
 | |
| *>
 | |
| *> where U, V and Q are unitary matrices.
 | |
| *> Let K+L = the effective numerical rank of the
 | |
| *> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
 | |
| *> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
 | |
| *> matrices and of the following structures, respectively:
 | |
| *>
 | |
| *> If M-K-L >= 0,
 | |
| *>
 | |
| *>                     K  L
 | |
| *>        D1 =     K ( I  0 )
 | |
| *>                 L ( 0  C )
 | |
| *>             M-K-L ( 0  0 )
 | |
| *>
 | |
| *>                   K  L
 | |
| *>        D2 =   L ( 0  S )
 | |
| *>             P-L ( 0  0 )
 | |
| *>
 | |
| *>                 N-K-L  K    L
 | |
| *>   ( 0 R ) = K (  0   R11  R12 )
 | |
| *>             L (  0    0   R22 )
 | |
| *> where
 | |
| *>
 | |
| *>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
 | |
| *>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
 | |
| *>   C**2 + S**2 = I.
 | |
| *>
 | |
| *>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
 | |
| *>
 | |
| *> If M-K-L < 0,
 | |
| *>
 | |
| *>                   K M-K K+L-M
 | |
| *>        D1 =   K ( I  0    0   )
 | |
| *>             M-K ( 0  C    0   )
 | |
| *>
 | |
| *>                     K M-K K+L-M
 | |
| *>        D2 =   M-K ( 0  S    0  )
 | |
| *>             K+L-M ( 0  0    I  )
 | |
| *>               P-L ( 0  0    0  )
 | |
| *>
 | |
| *>                    N-K-L  K   M-K  K+L-M
 | |
| *>   ( 0 R ) =     K ( 0    R11  R12  R13  )
 | |
| *>               M-K ( 0     0   R22  R23  )
 | |
| *>             K+L-M ( 0     0    0   R33  )
 | |
| *>
 | |
| *> where
 | |
| *>
 | |
| *>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 | |
| *>   S = diag( BETA(K+1),  ... , BETA(M) ),
 | |
| *>   C**2 + S**2 = I.
 | |
| *>
 | |
| *>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
 | |
| *>   ( 0  R22 R23 )
 | |
| *>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
 | |
| *>
 | |
| *> The routine computes C, S, R, and optionally the unitary
 | |
| *> transformation matrices U, V and Q.
 | |
| *>
 | |
| *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
 | |
| *> A and B implicitly gives the SVD of A*inv(B):
 | |
| *>                      A*inv(B) = U*(D1*inv(D2))*V**H.
 | |
| *> If ( A**H,B**H)**H has orthnormal columns, then the GSVD of A and B is also
 | |
| *> equal to the CS decomposition of A and B. Furthermore, the GSVD can
 | |
| *> be used to derive the solution of the eigenvalue problem:
 | |
| *>                      A**H*A x = lambda* B**H*B x.
 | |
| *> In some literature, the GSVD of A and B is presented in the form
 | |
| *>                  U**H*A*X = ( 0 D1 ),   V**H*B*X = ( 0 D2 )
 | |
| *> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
 | |
| *> ``diagonal''.  The former GSVD form can be converted to the latter
 | |
| *> form by taking the nonsingular matrix X as
 | |
| *>
 | |
| *>                       X = Q*(  I   0    )
 | |
| *>                             (  0 inv(R) )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBU
 | |
| *> \verbatim
 | |
| *>          JOBU is CHARACTER*1
 | |
| *>          = 'U':  Unitary matrix U is computed;
 | |
| *>          = 'N':  U is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV
 | |
| *> \verbatim
 | |
| *>          JOBV is CHARACTER*1
 | |
| *>          = 'V':  Unitary matrix V is computed;
 | |
| *>          = 'N':  V is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBQ
 | |
| *> \verbatim
 | |
| *>          JOBQ is CHARACTER*1
 | |
| *>          = 'Q':  Unitary matrix Q is computed;
 | |
| *>          = 'N':  Q is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>
 | |
| *>          On exit, K and L specify the dimension of the subblocks
 | |
| *>          described in Purpose.
 | |
| *>          K + L = effective numerical rank of (A**H,B**H)**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, A contains the triangular matrix R, or part of R.
 | |
| *>          See Purpose for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB,N)
 | |
| *>          On entry, the P-by-N matrix B.
 | |
| *>          On exit, B contains part of the triangular matrix R if
 | |
| *>          M-K-L < 0.  See Purpose for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION array, dimension (N)
 | |
| *>
 | |
| *>          On exit, ALPHA and BETA contain the generalized singular
 | |
| *>          value pairs of A and B;
 | |
| *>            ALPHA(1:K) = 1,
 | |
| *>            BETA(1:K)  = 0,
 | |
| *>          and if M-K-L >= 0,
 | |
| *>            ALPHA(K+1:K+L) = C,
 | |
| *>            BETA(K+1:K+L)  = S,
 | |
| *>          or if M-K-L < 0,
 | |
| *>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
 | |
| *>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
 | |
| *>          and
 | |
| *>            ALPHA(K+L+1:N) = 0
 | |
| *>            BETA(K+L+1:N)  = 0
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX*16 array, dimension (LDU,M)
 | |
| *>          If JOBU = 'U', U contains the M-by-M unitary matrix U.
 | |
| *>          If JOBU = 'N', U is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U. LDU >= max(1,M) if
 | |
| *>          JOBU = 'U'; LDU >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX*16 array, dimension (LDV,P)
 | |
| *>          If JOBV = 'V', V contains the P-by-P unitary matrix V.
 | |
| *>          If JOBV = 'N', V is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V. LDV >= max(1,P) if
 | |
| *>          JOBV = 'V'; LDV >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX*16 array, dimension (LDQ,N)
 | |
| *>          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
 | |
| *>          If JOBQ = 'N', Q is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q. LDQ >= max(1,N) if
 | |
| *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (max(3*N,M,P)+N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N)
 | |
| *>          On exit, IWORK stores the sorting information. More
 | |
| *>          precisely, the following loop will sort ALPHA
 | |
| *>             for I = K+1, min(M,K+L)
 | |
| *>                 swap ALPHA(I) and ALPHA(IWORK(I))
 | |
| *>             endfor
 | |
| *>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
 | |
| *>                converge.  For further details, see subroutine ZTGSJA.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  TOLA    DOUBLE PRECISION
 | |
| *>  TOLB    DOUBLE PRECISION
 | |
| *>          TOLA and TOLB are the thresholds to determine the effective
 | |
| *>          rank of (A**H,B**H)**H. Generally, they are set to
 | |
| *>                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
 | |
| *>                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
 | |
| *>          The size of TOLA and TOLB may affect the size of backward
 | |
| *>          errors of the decomposition.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16OTHERsing
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Huan Ren, Computer Science Division, University of
 | |
| *>     California at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
 | |
|      $                   LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
 | |
|      $                   RWORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBQ, JOBU, JOBV
 | |
|       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   ALPHA( * ), BETA( * ), RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
|      $                   U( LDU, * ), V( LDV, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            WANTQ, WANTU, WANTV
 | |
|       INTEGER            I, IBND, ISUB, J, NCYCLE
 | |
|       DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE
 | |
|       EXTERNAL           LSAME, DLAMCH, ZLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, XERBLA, ZGGSVP, ZTGSJA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       WANTU = LSAME( JOBU, 'U' )
 | |
|       WANTV = LSAME( JOBV, 'V' )
 | |
|       WANTQ = LSAME( JOBQ, 'Q' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( P.LT.0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
 | |
|          INFO = -16
 | |
|       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
 | |
|          INFO = -18
 | |
|       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | |
|          INFO = -20
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGGSVD', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute the Frobenius norm of matrices A and B
 | |
| *
 | |
|       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
 | |
|       BNORM = ZLANGE( '1', P, N, B, LDB, RWORK )
 | |
| *
 | |
| *     Get machine precision and set up threshold for determining
 | |
| *     the effective numerical rank of the matrices A and B.
 | |
| *
 | |
|       ULP = DLAMCH( 'Precision' )
 | |
|       UNFL = DLAMCH( 'Safe Minimum' )
 | |
|       TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
 | |
|       TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
 | |
| *
 | |
|       CALL ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 | |
|      $             TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
 | |
|      $             WORK, WORK( N+1 ), INFO )
 | |
| *
 | |
| *     Compute the GSVD of two upper "triangular" matrices
 | |
| *
 | |
|       CALL ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 | |
|      $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
 | |
|      $             WORK, NCYCLE, INFO )
 | |
| *
 | |
| *     Sort the singular values and store the pivot indices in IWORK
 | |
| *     Copy ALPHA to RWORK, then sort ALPHA in RWORK
 | |
| *
 | |
|       CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
 | |
|       IBND = MIN( L, M-K )
 | |
|       DO 20 I = 1, IBND
 | |
| *
 | |
| *        Scan for largest ALPHA(K+I)
 | |
| *
 | |
|          ISUB = I
 | |
|          SMAX = RWORK( K+I )
 | |
|          DO 10 J = I + 1, IBND
 | |
|             TEMP = RWORK( K+J )
 | |
|             IF( TEMP.GT.SMAX ) THEN
 | |
|                ISUB = J
 | |
|                SMAX = TEMP
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|          IF( ISUB.NE.I ) THEN
 | |
|             RWORK( K+ISUB ) = RWORK( K+I )
 | |
|             RWORK( K+I ) = SMAX
 | |
|             IWORK( K+I ) = K + ISUB
 | |
|          ELSE
 | |
|             IWORK( K+I ) = K + I
 | |
|          END IF
 | |
|    20 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGGSVD
 | |
| *
 | |
|       END
 |