436 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			436 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SGELSX solves overdetermined or underdetermined systems for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGELSX + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsx.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsx.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsx.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 | |
| *                          WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
 | |
| *       REAL               RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            JPVT( * )
 | |
| *       REAL               A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> This routine is deprecated and has been replaced by routine SGELSY.
 | |
| *>
 | |
| *> SGELSX computes the minimum-norm solution to a real linear least
 | |
| *> squares problem:
 | |
| *>     minimize || A * X - B ||
 | |
| *> using a complete orthogonal factorization of A.  A is an M-by-N
 | |
| *> matrix which may be rank-deficient.
 | |
| *>
 | |
| *> Several right hand side vectors b and solution vectors x can be
 | |
| *> handled in a single call; they are stored as the columns of the
 | |
| *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | |
| *> matrix X.
 | |
| *>
 | |
| *> The routine first computes a QR factorization with column pivoting:
 | |
| *>     A * P = Q * [ R11 R12 ]
 | |
| *>                 [  0  R22 ]
 | |
| *> with R11 defined as the largest leading submatrix whose estimated
 | |
| *> condition number is less than 1/RCOND.  The order of R11, RANK,
 | |
| *> is the effective rank of A.
 | |
| *>
 | |
| *> Then, R22 is considered to be negligible, and R12 is annihilated
 | |
| *> by orthogonal transformations from the right, arriving at the
 | |
| *> complete orthogonal factorization:
 | |
| *>    A * P = Q * [ T11 0 ] * Z
 | |
| *>                [  0  0 ]
 | |
| *> The minimum-norm solution is then
 | |
| *>    X = P * Z**T [ inv(T11)*Q1**T*B ]
 | |
| *>                 [        0         ]
 | |
| *> where Q1 consists of the first RANK columns of Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of
 | |
| *>          columns of matrices B and X. NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, A has been overwritten by details of its
 | |
| *>          complete orthogonal factorization.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          On entry, the M-by-NRHS right hand side matrix B.
 | |
| *>          On exit, the N-by-NRHS solution matrix X.
 | |
| *>          If m >= n and RANK = n, the residual sum-of-squares for
 | |
| *>          the solution in the i-th column is given by the sum of
 | |
| *>          squares of elements N+1:M in that column.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] JPVT
 | |
| *> \verbatim
 | |
| *>          JPVT is INTEGER array, dimension (N)
 | |
| *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
 | |
| *>          initial column, otherwise it is a free column.  Before
 | |
| *>          the QR factorization of A, all initial columns are
 | |
| *>          permuted to the leading positions; only the remaining
 | |
| *>          free columns are moved as a result of column pivoting
 | |
| *>          during the factorization.
 | |
| *>          On exit, if JPVT(i) = k, then the i-th column of A*P
 | |
| *>          was the k-th column of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          RCOND is used to determine the effective rank of A, which
 | |
| *>          is defined as the order of the largest leading triangular
 | |
| *>          submatrix R11 in the QR factorization with pivoting of A,
 | |
| *>          whose estimated condition number < 1/RCOND.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RANK
 | |
| *> \verbatim
 | |
| *>          RANK is INTEGER
 | |
| *>          The effective rank of A, i.e., the order of the submatrix
 | |
| *>          R11.  This is the same as the order of the submatrix T11
 | |
| *>          in the complete orthogonal factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension
 | |
| *>                      (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realGEsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 | |
|      $                   WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
 | |
|       REAL               RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            JPVT( * )
 | |
|       REAL               A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            IMAX, IMIN
 | |
|       PARAMETER          ( IMAX = 1, IMIN = 2 )
 | |
|       REAL               ZERO, ONE, DONE, NTDONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, DONE = ZERO,
 | |
|      $                   NTDONE = ONE )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
 | |
|       REAL               ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
 | |
|      $                   SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEQPF, SLABAD, SLAIC1, SLASCL, SLASET, SLATZM,
 | |
|      $                   SORM2R, STRSM, STZRQF, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       MN = MIN( M, N )
 | |
|       ISMIN = MN + 1
 | |
|       ISMAX = 2*MN + 1
 | |
| *
 | |
| *     Test the input arguments.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGELSX', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
 | |
|          RANK = 0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine parameters
 | |
| *
 | |
|       SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
 | |
|       IASCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 1
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 2
 | |
|       ELSE IF( ANRM.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Matrix all zero. Return zero solution.
 | |
| *
 | |
|          CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | |
|          RANK = 0
 | |
|          GO TO 100
 | |
|       END IF
 | |
| *
 | |
|       BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK )
 | |
|       IBSCL = 0
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | |
|          IBSCL = 1
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | |
|          IBSCL = 2
 | |
|       END IF
 | |
| *
 | |
| *     Compute QR factorization with column pivoting of A:
 | |
| *        A * P = Q * R
 | |
| *
 | |
|       CALL SGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
 | |
| *
 | |
| *     workspace 3*N. Details of Householder rotations stored
 | |
| *     in WORK(1:MN).
 | |
| *
 | |
| *     Determine RANK using incremental condition estimation
 | |
| *
 | |
|       WORK( ISMIN ) = ONE
 | |
|       WORK( ISMAX ) = ONE
 | |
|       SMAX = ABS( A( 1, 1 ) )
 | |
|       SMIN = SMAX
 | |
|       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
 | |
|          RANK = 0
 | |
|          CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | |
|          GO TO 100
 | |
|       ELSE
 | |
|          RANK = 1
 | |
|       END IF
 | |
| *
 | |
|    10 CONTINUE
 | |
|       IF( RANK.LT.MN ) THEN
 | |
|          I = RANK + 1
 | |
|          CALL SLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
 | |
|      $                A( I, I ), SMINPR, S1, C1 )
 | |
|          CALL SLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
 | |
|      $                A( I, I ), SMAXPR, S2, C2 )
 | |
| *
 | |
|          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
 | |
|             DO 20 I = 1, RANK
 | |
|                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
 | |
|                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
 | |
|    20       CONTINUE
 | |
|             WORK( ISMIN+RANK ) = C1
 | |
|             WORK( ISMAX+RANK ) = C2
 | |
|             SMIN = SMINPR
 | |
|             SMAX = SMAXPR
 | |
|             RANK = RANK + 1
 | |
|             GO TO 10
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Logically partition R = [ R11 R12 ]
 | |
| *                             [  0  R22 ]
 | |
| *     where R11 = R(1:RANK,1:RANK)
 | |
| *
 | |
| *     [R11,R12] = [ T11, 0 ] * Y
 | |
| *
 | |
|       IF( RANK.LT.N )
 | |
|      $   CALL STZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
 | |
| *
 | |
| *     Details of Householder rotations stored in WORK(MN+1:2*MN)
 | |
| *
 | |
| *     B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
 | |
| *
 | |
|       CALL SORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
 | |
|      $             B, LDB, WORK( 2*MN+1 ), INFO )
 | |
| *
 | |
| *     workspace NRHS
 | |
| *
 | |
| *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
 | |
| *
 | |
|       CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
 | |
|      $            NRHS, ONE, A, LDA, B, LDB )
 | |
| *
 | |
|       DO 40 I = RANK + 1, N
 | |
|          DO 30 J = 1, NRHS
 | |
|             B( I, J ) = ZERO
 | |
|    30    CONTINUE
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
 | |
| *
 | |
|       IF( RANK.LT.N ) THEN
 | |
|          DO 50 I = 1, RANK
 | |
|             CALL SLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
 | |
|      $                   WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
 | |
|      $                   WORK( 2*MN+1 ) )
 | |
|    50    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     workspace NRHS
 | |
| *
 | |
| *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
 | |
| *
 | |
|       DO 90 J = 1, NRHS
 | |
|          DO 60 I = 1, N
 | |
|             WORK( 2*MN+I ) = NTDONE
 | |
|    60    CONTINUE
 | |
|          DO 80 I = 1, N
 | |
|             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
 | |
|                IF( JPVT( I ).NE.I ) THEN
 | |
|                   K = I
 | |
|                   T1 = B( K, J )
 | |
|                   T2 = B( JPVT( K ), J )
 | |
|    70             CONTINUE
 | |
|                   B( JPVT( K ), J ) = T1
 | |
|                   WORK( 2*MN+K ) = DONE
 | |
|                   T1 = T2
 | |
|                   K = JPVT( K )
 | |
|                   T2 = B( JPVT( K ), J )
 | |
|                   IF( JPVT( K ).NE.I )
 | |
|      $               GO TO 70
 | |
|                   B( I, J ) = T1
 | |
|                   WORK( 2*MN+K ) = DONE
 | |
|                END IF
 | |
|             END IF
 | |
|    80    CONTINUE
 | |
|    90 CONTINUE
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( IASCL.EQ.1 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | |
|          CALL SLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
 | |
|      $                INFO )
 | |
|       ELSE IF( IASCL.EQ.2 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | |
|          CALL SLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
 | |
|      $                INFO )
 | |
|       END IF
 | |
|       IF( IBSCL.EQ.1 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | |
|       ELSE IF( IBSCL.EQ.2 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | |
|       END IF
 | |
| *
 | |
|   100 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGELSX
 | |
| *
 | |
|       END
 |