307 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGEQPF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEQPF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqpf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqpf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqpf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            JPVT( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> This routine is deprecated and has been replaced by routine DGEQP3.
 | |
| *>
 | |
| *> DGEQPF computes a QR factorization with column pivoting of a
 | |
| *> real M-by-N matrix A: A*P = Q*R.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. N >= 0
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, the upper triangle of the array contains the
 | |
| *>          min(M,N)-by-N upper triangular matrix R; the elements
 | |
| *>          below the diagonal, together with the array TAU,
 | |
| *>          represent the orthogonal matrix Q as a product of
 | |
| *>          min(m,n) elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] JPVT
 | |
| *> \verbatim
 | |
| *>          JPVT is INTEGER array, dimension (N)
 | |
| *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
 | |
| *>          to the front of A*P (a leading column); if JPVT(i) = 0,
 | |
| *>          the i-th column of A is a free column.
 | |
| *>          On exit, if JPVT(i) = k, then the i-th column of A*P
 | |
| *>          was the k-th column of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (3*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(n)
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real vector with
 | |
| *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
 | |
| *>
 | |
| *>  The matrix P is represented in jpvt as follows: If
 | |
| *>     jpvt(j) = i
 | |
| *>  then the jth column of P is the ith canonical unit vector.
 | |
| *>
 | |
| *>  Partial column norm updating strategy modified by
 | |
| *>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
 | |
| *>    University of Zagreb, Croatia.
 | |
| *>  -- April 2011                                                      --
 | |
| *>  For more details see LAPACK Working Note 176.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            JPVT( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, ITEMP, J, MA, MN, PVT
 | |
|       DOUBLE PRECISION   AII, TEMP, TEMP2, TOL3Z
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEQR2, DLARF, DLARFG, DORM2R, DSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH, DNRM2
 | |
|       EXTERNAL           IDAMAX, DLAMCH, DNRM2
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGEQPF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       MN = MIN( M, N )
 | |
|       TOL3Z = SQRT(DLAMCH('Epsilon'))
 | |
| *
 | |
| *     Move initial columns up front
 | |
| *
 | |
|       ITEMP = 1
 | |
|       DO 10 I = 1, N
 | |
|          IF( JPVT( I ).NE.0 ) THEN
 | |
|             IF( I.NE.ITEMP ) THEN
 | |
|                CALL DSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 )
 | |
|                JPVT( I ) = JPVT( ITEMP )
 | |
|                JPVT( ITEMP ) = I
 | |
|             ELSE
 | |
|                JPVT( I ) = I
 | |
|             END IF
 | |
|             ITEMP = ITEMP + 1
 | |
|          ELSE
 | |
|             JPVT( I ) = I
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       ITEMP = ITEMP - 1
 | |
| *
 | |
| *     Compute the QR factorization and update remaining columns
 | |
| *
 | |
|       IF( ITEMP.GT.0 ) THEN
 | |
|          MA = MIN( ITEMP, M )
 | |
|          CALL DGEQR2( M, MA, A, LDA, TAU, WORK, INFO )
 | |
|          IF( MA.LT.N ) THEN
 | |
|             CALL DORM2R( 'Left', 'Transpose', M, N-MA, MA, A, LDA, TAU,
 | |
|      $                   A( 1, MA+1 ), LDA, WORK, INFO )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( ITEMP.LT.MN ) THEN
 | |
| *
 | |
| *        Initialize partial column norms. The first n elements of
 | |
| *        work store the exact column norms.
 | |
| *
 | |
|          DO 20 I = ITEMP + 1, N
 | |
|             WORK( I ) = DNRM2( M-ITEMP, A( ITEMP+1, I ), 1 )
 | |
|             WORK( N+I ) = WORK( I )
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        Compute factorization
 | |
| *
 | |
|          DO 40 I = ITEMP + 1, MN
 | |
| *
 | |
| *           Determine ith pivot column and swap if necessary
 | |
| *
 | |
|             PVT = ( I-1 ) + IDAMAX( N-I+1, WORK( I ), 1 )
 | |
| *
 | |
|             IF( PVT.NE.I ) THEN
 | |
|                CALL DSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
 | |
|                ITEMP = JPVT( PVT )
 | |
|                JPVT( PVT ) = JPVT( I )
 | |
|                JPVT( I ) = ITEMP
 | |
|                WORK( PVT ) = WORK( I )
 | |
|                WORK( N+PVT ) = WORK( N+I )
 | |
|             END IF
 | |
| *
 | |
| *           Generate elementary reflector H(i)
 | |
| *
 | |
|             IF( I.LT.M ) THEN
 | |
|                CALL DLARFG( M-I+1, A( I, I ), A( I+1, I ), 1, TAU( I ) )
 | |
|             ELSE
 | |
|                CALL DLARFG( 1, A( M, M ), A( M, M ), 1, TAU( M ) )
 | |
|             END IF
 | |
| *
 | |
|             IF( I.LT.N ) THEN
 | |
| *
 | |
| *              Apply H(i) to A(i:m,i+1:n) from the left
 | |
| *
 | |
|                AII = A( I, I )
 | |
|                A( I, I ) = ONE
 | |
|                CALL DLARF( 'LEFT', M-I+1, N-I, A( I, I ), 1, TAU( I ),
 | |
|      $                     A( I, I+1 ), LDA, WORK( 2*N+1 ) )
 | |
|                A( I, I ) = AII
 | |
|             END IF
 | |
| *
 | |
| *           Update partial column norms
 | |
| *
 | |
|             DO 30 J = I + 1, N
 | |
|                IF( WORK( J ).NE.ZERO ) THEN
 | |
| *
 | |
| *                 NOTE: The following 4 lines follow from the analysis in
 | |
| *                 Lapack Working Note 176.
 | |
| *
 | |
|                   TEMP = ABS( A( I, J ) ) / WORK( J )
 | |
|                   TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
 | |
|                   TEMP2 = TEMP*( WORK( J ) / WORK( N+J ) )**2
 | |
|                   IF( TEMP2 .LE. TOL3Z ) THEN
 | |
|                      IF( M-I.GT.0 ) THEN
 | |
|                         WORK( J ) = DNRM2( M-I, A( I+1, J ), 1 )
 | |
|                         WORK( N+J ) = WORK( J )
 | |
|                      ELSE
 | |
|                         WORK( J ) = ZERO
 | |
|                         WORK( N+J ) = ZERO
 | |
|                      END IF
 | |
|                   ELSE
 | |
|                      WORK( J ) = WORK( J )*SQRT( TEMP )
 | |
|                   END IF
 | |
|                END IF
 | |
|    30       CONTINUE
 | |
| *
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGEQPF
 | |
| *
 | |
|       END
 |