542 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			542 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEGS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
 | |
| *                         ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
 | |
| *                         LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBVSL, JOBVSR
 | |
| *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
| *      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
 | |
| *      $                   VSR( LDVSR, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> This routine is deprecated and has been replaced by routine DGGES.
 | |
| *>
 | |
| *> DGEGS computes the eigenvalues, real Schur form, and, optionally,
 | |
| *> left and or/right Schur vectors of a real matrix pair (A,B).
 | |
| *> Given two square matrices A and B, the generalized real Schur
 | |
| *> factorization has the form
 | |
| *>
 | |
| *>   A = Q*S*Z**T,  B = Q*T*Z**T
 | |
| *>
 | |
| *> where Q and Z are orthogonal matrices, T is upper triangular, and S
 | |
| *> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
 | |
| *> blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
 | |
| *> of eigenvalues of (A,B).  The columns of Q are the left Schur vectors
 | |
| *> and the columns of Z are the right Schur vectors.
 | |
| *>
 | |
| *> If only the eigenvalues of (A,B) are needed, the driver routine
 | |
| *> DGEGV should be used instead.  See DGEGV for a description of the
 | |
| *> eigenvalues of the generalized nonsymmetric eigenvalue problem
 | |
| *> (GNEP).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBVSL
 | |
| *> \verbatim
 | |
| *>          JOBVSL is CHARACTER*1
 | |
| *>          = 'N':  do not compute the left Schur vectors;
 | |
| *>          = 'V':  compute the left Schur vectors (returned in VSL).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVSR
 | |
| *> \verbatim
 | |
| *>          JOBVSR is CHARACTER*1
 | |
| *>          = 'N':  do not compute the right Schur vectors;
 | |
| *>          = 'V':  compute the right Schur vectors (returned in VSR).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA, N)
 | |
| *>          On entry, the matrix A.
 | |
| *>          On exit, the upper quasi-triangular matrix S from the
 | |
| *>          generalized real Schur factorization.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB, N)
 | |
| *>          On entry, the matrix B.
 | |
| *>          On exit, the upper triangular matrix T from the generalized
 | |
| *>          real Schur factorization.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The real parts of each scalar alpha defining an eigenvalue
 | |
| *>          of GNEP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The imaginary parts of each scalar alpha defining an
 | |
| *>          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
 | |
| *>          eigenvalue is real; if positive, then the j-th and (j+1)-st
 | |
| *>          eigenvalues are a complex conjugate pair, with
 | |
| *>          ALPHAI(j+1) = -ALPHAI(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The scalars beta that define the eigenvalues of GNEP.
 | |
| *>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
 | |
| *>          beta = BETA(j) represent the j-th eigenvalue of the matrix
 | |
| *>          pair (A,B), in one of the forms lambda = alpha/beta or
 | |
| *>          mu = beta/alpha.  Since either lambda or mu may overflow,
 | |
| *>          they should not, in general, be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VSL
 | |
| *> \verbatim
 | |
| *>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
 | |
| *>          If JOBVSL = 'V', the matrix of left Schur vectors Q.
 | |
| *>          Not referenced if JOBVSL = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVSL
 | |
| *> \verbatim
 | |
| *>          LDVSL is INTEGER
 | |
| *>          The leading dimension of the matrix VSL. LDVSL >=1, and
 | |
| *>          if JOBVSL = 'V', LDVSL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VSR
 | |
| *> \verbatim
 | |
| *>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
 | |
| *>          If JOBVSR = 'V', the matrix of right Schur vectors Z.
 | |
| *>          Not referenced if JOBVSR = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVSR
 | |
| *> \verbatim
 | |
| *>          LDVSR is INTEGER
 | |
| *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
 | |
| *>          if JOBVSR = 'V', LDVSR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,4*N).
 | |
| *>          For good performance, LWORK must generally be larger.
 | |
| *>          To compute the optimal value of LWORK, call ILAENV to get
 | |
| *>          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
 | |
| *>          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
 | |
| *>          The optimal LWORK is  2*N + N*(NB+1).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          = 1,...,N:
 | |
| *>                The QZ iteration failed.  (A,B) are not in Schur
 | |
| *>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
 | |
| *>                be correct for j=INFO+1,...,N.
 | |
| *>          > N:  errors that usually indicate LAPACK problems:
 | |
| *>                =N+1: error return from DGGBAL
 | |
| *>                =N+2: error return from DGEQRF
 | |
| *>                =N+3: error return from DORMQR
 | |
| *>                =N+4: error return from DORGQR
 | |
| *>                =N+5: error return from DGGHRD
 | |
| *>                =N+6: error return from DHGEQZ (other than failed
 | |
| *>                                                iteration)
 | |
| *>                =N+7: error return from DGGBAK (computing VSL)
 | |
| *>                =N+8: error return from DGGBAK (computing VSR)
 | |
| *>                =N+9: error return from DLASCL (various places)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleGEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
 | |
|      $                  ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
 | |
|      $                  LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBVSL, JOBVSR
 | |
|       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
|      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
 | |
|      $                   VSR( LDVSR, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
 | |
|       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
 | |
|      $                   IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
 | |
|      $                   LWKOPT, NB, NB1, NB2, NB3
 | |
|       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
 | |
|      $                   SAFMIN, SMLNUM
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
 | |
|      $                   DLASCL, DLASET, DORGQR, DORMQR, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          INT, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode the input arguments
 | |
| *
 | |
|       IF( LSAME( JOBVSL, 'N' ) ) THEN
 | |
|          IJOBVL = 1
 | |
|          ILVSL = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
 | |
|          IJOBVL = 2
 | |
|          ILVSL = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVL = -1
 | |
|          ILVSL = .FALSE.
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( JOBVSR, 'N' ) ) THEN
 | |
|          IJOBVR = 1
 | |
|          ILVSR = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
 | |
|          IJOBVR = 2
 | |
|          ILVSR = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVR = -1
 | |
|          ILVSR = .FALSE.
 | |
|       END IF
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       LWKMIN = MAX( 4*N, 1 )
 | |
|       LWKOPT = LWKMIN
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       INFO = 0
 | |
|       IF( IJOBVL.LE.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( IJOBVR.LE.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -16
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
 | |
|          NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
 | |
|          NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
 | |
|          NB = MAX( NB1, NB2, NB3 )
 | |
|          LOPT = 2*N + N*( NB+1 )
 | |
|          WORK( 1 ) = LOPT
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGEGS ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
 | |
|       SAFMIN = DLAMCH( 'S' )
 | |
|       SMLNUM = N*SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
 | |
|       ILASCL = .FALSE.
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          ANRMTO = SMLNUM
 | |
|          ILASCL = .TRUE.
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          ANRMTO = BIGNUM
 | |
|          ILASCL = .TRUE.
 | |
|       END IF
 | |
| *
 | |
|       IF( ILASCL ) THEN
 | |
|          CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 9
 | |
|             RETURN
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Scale B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
 | |
|       ILBSCL = .FALSE.
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
|          BNRMTO = SMLNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
|          BNRMTO = BIGNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       END IF
 | |
| *
 | |
|       IF( ILBSCL ) THEN
 | |
|          CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 9
 | |
|             RETURN
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Permute the matrix to make it more nearly triangular
 | |
| *     Workspace layout:  (2*N words -- "work..." not actually used)
 | |
| *        left_permutation, right_permutation, work...
 | |
| *
 | |
|       ILEFT = 1
 | |
|       IRIGHT = N + 1
 | |
|       IWORK = IRIGHT + N
 | |
|       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
 | |
|      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          INFO = N + 1
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Reduce B to triangular form, and initialize VSL and/or VSR
 | |
| *     Workspace layout:  ("work..." must have at least N words)
 | |
| *        left_permutation, right_permutation, tau, work...
 | |
| *
 | |
|       IROWS = IHI + 1 - ILO
 | |
|       ICOLS = N + 1 - ILO
 | |
|       ITAU = IWORK
 | |
|       IWORK = ITAU + IROWS
 | |
|       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | |
|      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
 | |
|       IF( IINFO.GE.0 )
 | |
|      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          INFO = N + 2
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
|       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | |
|      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
 | |
|      $             LWORK+1-IWORK, IINFO )
 | |
|       IF( IINFO.GE.0 )
 | |
|      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          INFO = N + 3
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
|       IF( ILVSL ) THEN
 | |
|          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
 | |
|          CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | |
|      $                VSL( ILO+1, ILO ), LDVSL )
 | |
|          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
 | |
|      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
 | |
|      $                IINFO )
 | |
|          IF( IINFO.GE.0 )
 | |
|      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 4
 | |
|             GO TO 10
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( ILVSR )
 | |
|      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
 | |
| *
 | |
| *     Reduce to generalized Hessenberg form
 | |
| *
 | |
|       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
 | |
|      $             LDVSL, VSR, LDVSR, IINFO )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          INFO = N + 5
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Perform QZ algorithm, computing Schur vectors if desired
 | |
| *     Workspace layout:  ("work..." must have at least 1 word)
 | |
| *        left_permutation, right_permutation, work...
 | |
| *
 | |
|       IWORK = ITAU
 | |
|       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
 | |
|      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
 | |
|      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
 | |
|       IF( IINFO.GE.0 )
 | |
|      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | |
|       IF( IINFO.NE.0 ) THEN
 | |
|          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
 | |
|             INFO = IINFO
 | |
|          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
 | |
|             INFO = IINFO - N
 | |
|          ELSE
 | |
|             INFO = N + 6
 | |
|          END IF
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Apply permutation to VSL and VSR
 | |
| *
 | |
|       IF( ILVSL ) THEN
 | |
|          CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
 | |
|      $                WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 7
 | |
|             GO TO 10
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ILVSR ) THEN
 | |
|          CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
 | |
|      $                WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 8
 | |
|             GO TO 10
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( ILASCL ) THEN
 | |
|          CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 9
 | |
|             RETURN
 | |
|          END IF
 | |
|          CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
 | |
|      $                IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 9
 | |
|             RETURN
 | |
|          END IF
 | |
|          CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
 | |
|      $                IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 9
 | |
|             RETURN
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( ILBSCL ) THEN
 | |
|          CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 9
 | |
|             RETURN
 | |
|          END IF
 | |
|          CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = N + 9
 | |
|             RETURN
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|    10 CONTINUE
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGEGS
 | |
| *
 | |
|       END
 |