374 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			374 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZTRMV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER INCX,LDA,N
 | |
| *       CHARACTER DIAG,TRANS,UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16 A(LDA,*),X(*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZTRMV  performs one of the matrix-vector operations
 | |
| *>
 | |
| *>    x := A*x,   or   x := A**T*x,   or   x := A**H*x,
 | |
| *>
 | |
| *> where x is an n element vector and  A is an n by n unit, or non-unit,
 | |
| *> upper or lower triangular matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the matrix is an upper or
 | |
| *>           lower triangular matrix as follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>           On entry, TRANS specifies the operation to be performed as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              TRANS = 'N' or 'n'   x := A*x.
 | |
| *>
 | |
| *>              TRANS = 'T' or 't'   x := A**T*x.
 | |
| *>
 | |
| *>              TRANS = 'C' or 'c'   x := A**H*x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>           On entry, DIAG specifies whether or not A is unit
 | |
| *>           triangular as follows:
 | |
| *>
 | |
| *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *>
 | |
| *>              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *>                                  triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension ( LDA, N ).
 | |
| *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | |
| *>           upper triangular part of the array A must contain the upper
 | |
| *>           triangular matrix and the strictly lower triangular part of
 | |
| *>           A is not referenced.
 | |
| *>           Before entry with UPLO = 'L' or 'l', the leading n by n
 | |
| *>           lower triangular part of the array A must contain the lower
 | |
| *>           triangular matrix and the strictly upper triangular part of
 | |
| *>           A is not referenced.
 | |
| *>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 | |
| *>           A are not referenced either, but are assumed to be unity.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           max( 1, n ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the n
 | |
| *>           element vector x. On exit, X is overwritten with the
 | |
| *>           transformed vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.7.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER INCX,LDA,N
 | |
|       CHARACTER DIAG,TRANS,UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16 A(LDA,*),X(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16 ZERO
 | |
|       PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16 TEMP
 | |
|       INTEGER I,INFO,IX,J,JX,KX
 | |
|       LOGICAL NOCONJ,NOUNIT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC DCONJG,MAX
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
 | |
|      +         .NOT.LSAME(TRANS,'C')) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (LDA.LT.MAX(1,N)) THEN
 | |
|           INFO = 6
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 8
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('ZTRMV ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF (N.EQ.0) RETURN
 | |
| *
 | |
|       NOCONJ = LSAME(TRANS,'T')
 | |
|       NOUNIT = LSAME(DIAG,'N')
 | |
| *
 | |
| *     Set up the start point in X if the increment is not unity. This
 | |
| *     will be  ( N - 1 )*INCX  too small for descending loops.
 | |
| *
 | |
|       IF (INCX.LE.0) THEN
 | |
|           KX = 1 - (N-1)*INCX
 | |
|       ELSE IF (INCX.NE.1) THEN
 | |
|           KX = 1
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through A.
 | |
| *
 | |
|       IF (LSAME(TRANS,'N')) THEN
 | |
| *
 | |
| *        Form  x := A*x.
 | |
| *
 | |
|           IF (LSAME(UPLO,'U')) THEN
 | |
|               IF (INCX.EQ.1) THEN
 | |
|                   DO 20 J = 1,N
 | |
|                       IF (X(J).NE.ZERO) THEN
 | |
|                           TEMP = X(J)
 | |
|                           DO 10 I = 1,J - 1
 | |
|                               X(I) = X(I) + TEMP*A(I,J)
 | |
|    10                     CONTINUE
 | |
|                           IF (NOUNIT) X(J) = X(J)*A(J,J)
 | |
|                       END IF
 | |
|    20             CONTINUE
 | |
|               ELSE
 | |
|                   JX = KX
 | |
|                   DO 40 J = 1,N
 | |
|                       IF (X(JX).NE.ZERO) THEN
 | |
|                           TEMP = X(JX)
 | |
|                           IX = KX
 | |
|                           DO 30 I = 1,J - 1
 | |
|                               X(IX) = X(IX) + TEMP*A(I,J)
 | |
|                               IX = IX + INCX
 | |
|    30                     CONTINUE
 | |
|                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
 | |
|                       END IF
 | |
|                       JX = JX + INCX
 | |
|    40             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IF (INCX.EQ.1) THEN
 | |
|                   DO 60 J = N,1,-1
 | |
|                       IF (X(J).NE.ZERO) THEN
 | |
|                           TEMP = X(J)
 | |
|                           DO 50 I = N,J + 1,-1
 | |
|                               X(I) = X(I) + TEMP*A(I,J)
 | |
|    50                     CONTINUE
 | |
|                           IF (NOUNIT) X(J) = X(J)*A(J,J)
 | |
|                       END IF
 | |
|    60             CONTINUE
 | |
|               ELSE
 | |
|                   KX = KX + (N-1)*INCX
 | |
|                   JX = KX
 | |
|                   DO 80 J = N,1,-1
 | |
|                       IF (X(JX).NE.ZERO) THEN
 | |
|                           TEMP = X(JX)
 | |
|                           IX = KX
 | |
|                           DO 70 I = N,J + 1,-1
 | |
|                               X(IX) = X(IX) + TEMP*A(I,J)
 | |
|                               IX = IX - INCX
 | |
|    70                     CONTINUE
 | |
|                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
 | |
|                       END IF
 | |
|                       JX = JX - INCX
 | |
|    80             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  x := A**T*x  or  x := A**H*x.
 | |
| *
 | |
|           IF (LSAME(UPLO,'U')) THEN
 | |
|               IF (INCX.EQ.1) THEN
 | |
|                   DO 110 J = N,1,-1
 | |
|                       TEMP = X(J)
 | |
|                       IF (NOCONJ) THEN
 | |
|                           IF (NOUNIT) TEMP = TEMP*A(J,J)
 | |
|                           DO 90 I = J - 1,1,-1
 | |
|                               TEMP = TEMP + A(I,J)*X(I)
 | |
|    90                     CONTINUE
 | |
|                       ELSE
 | |
|                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
 | |
|                           DO 100 I = J - 1,1,-1
 | |
|                               TEMP = TEMP + DCONJG(A(I,J))*X(I)
 | |
|   100                     CONTINUE
 | |
|                       END IF
 | |
|                       X(J) = TEMP
 | |
|   110             CONTINUE
 | |
|               ELSE
 | |
|                   JX = KX + (N-1)*INCX
 | |
|                   DO 140 J = N,1,-1
 | |
|                       TEMP = X(JX)
 | |
|                       IX = JX
 | |
|                       IF (NOCONJ) THEN
 | |
|                           IF (NOUNIT) TEMP = TEMP*A(J,J)
 | |
|                           DO 120 I = J - 1,1,-1
 | |
|                               IX = IX - INCX
 | |
|                               TEMP = TEMP + A(I,J)*X(IX)
 | |
|   120                     CONTINUE
 | |
|                       ELSE
 | |
|                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
 | |
|                           DO 130 I = J - 1,1,-1
 | |
|                               IX = IX - INCX
 | |
|                               TEMP = TEMP + DCONJG(A(I,J))*X(IX)
 | |
|   130                     CONTINUE
 | |
|                       END IF
 | |
|                       X(JX) = TEMP
 | |
|                       JX = JX - INCX
 | |
|   140             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IF (INCX.EQ.1) THEN
 | |
|                   DO 170 J = 1,N
 | |
|                       TEMP = X(J)
 | |
|                       IF (NOCONJ) THEN
 | |
|                           IF (NOUNIT) TEMP = TEMP*A(J,J)
 | |
|                           DO 150 I = J + 1,N
 | |
|                               TEMP = TEMP + A(I,J)*X(I)
 | |
|   150                     CONTINUE
 | |
|                       ELSE
 | |
|                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
 | |
|                           DO 160 I = J + 1,N
 | |
|                               TEMP = TEMP + DCONJG(A(I,J))*X(I)
 | |
|   160                     CONTINUE
 | |
|                       END IF
 | |
|                       X(J) = TEMP
 | |
|   170             CONTINUE
 | |
|               ELSE
 | |
|                   JX = KX
 | |
|                   DO 200 J = 1,N
 | |
|                       TEMP = X(JX)
 | |
|                       IX = JX
 | |
|                       IF (NOCONJ) THEN
 | |
|                           IF (NOUNIT) TEMP = TEMP*A(J,J)
 | |
|                           DO 180 I = J + 1,N
 | |
|                               IX = IX + INCX
 | |
|                               TEMP = TEMP + A(I,J)*X(IX)
 | |
|   180                     CONTINUE
 | |
|                       ELSE
 | |
|                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
 | |
|                           DO 190 I = J + 1,N
 | |
|                               IX = IX + INCX
 | |
|                               TEMP = TEMP + DCONJG(A(I,J))*X(IX)
 | |
|   190                     CONTINUE
 | |
|                       END IF
 | |
|                       X(JX) = TEMP
 | |
|                       JX = JX + INCX
 | |
|   200             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZTRMV .
 | |
| *
 | |
|       END
 |