318 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZHER2
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       COMPLEX*16 ALPHA
 | |
| *       INTEGER INCX,INCY,LDA,N
 | |
| *       CHARACTER UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16 A(LDA,*),X(*),Y(*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZHER2  performs the hermitian rank 2 operation
 | |
| *>
 | |
| *>    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
 | |
| *>
 | |
| *> where alpha is a scalar, x and y are n element vectors and A is an n
 | |
| *> by n hermitian matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the upper or lower
 | |
| *>           triangular part of the array A is to be referenced as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | |
| *>                                  is to be referenced.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | |
| *>                                  is to be referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX*16
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the n
 | |
| *>           element vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Y
 | |
| *> \verbatim
 | |
| *>          Y is COMPLEX*16 array, dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCY ) ).
 | |
| *>           Before entry, the incremented array Y must contain the n
 | |
| *>           element vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension ( LDA, N )
 | |
| *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | |
| *>           upper triangular part of the array A must contain the upper
 | |
| *>           triangular part of the hermitian matrix and the strictly
 | |
| *>           lower triangular part of A is not referenced. On exit, the
 | |
| *>           upper triangular part of the array A is overwritten by the
 | |
| *>           upper triangular part of the updated matrix.
 | |
| *>           Before entry with UPLO = 'L' or 'l', the leading n by n
 | |
| *>           lower triangular part of the array A must contain the lower
 | |
| *>           triangular part of the hermitian matrix and the strictly
 | |
| *>           upper triangular part of A is not referenced. On exit, the
 | |
| *>           lower triangular part of the array A is overwritten by the
 | |
| *>           lower triangular part of the updated matrix.
 | |
| *>           Note that the imaginary parts of the diagonal elements need
 | |
| *>           not be set, they are assumed to be zero, and on exit they
 | |
| *>           are set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           max( 1, n ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.7.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX*16 ALPHA
 | |
|       INTEGER INCX,INCY,LDA,N
 | |
|       CHARACTER UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16 A(LDA,*),X(*),Y(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16 ZERO
 | |
|       PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16 TEMP1,TEMP2
 | |
|       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC DBLE,DCONJG,MAX
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 5
 | |
|       ELSE IF (INCY.EQ.0) THEN
 | |
|           INFO = 7
 | |
|       ELSE IF (LDA.LT.MAX(1,N)) THEN
 | |
|           INFO = 9
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('ZHER2 ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
 | |
| *
 | |
| *     Set up the start points in X and Y if the increments are not both
 | |
| *     unity.
 | |
| *
 | |
|       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
 | |
|           IF (INCX.GT.0) THEN
 | |
|               KX = 1
 | |
|           ELSE
 | |
|               KX = 1 - (N-1)*INCX
 | |
|           END IF
 | |
|           IF (INCY.GT.0) THEN
 | |
|               KY = 1
 | |
|           ELSE
 | |
|               KY = 1 - (N-1)*INCY
 | |
|           END IF
 | |
|           JX = KX
 | |
|           JY = KY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through the triangular part
 | |
| *     of A.
 | |
| *
 | |
|       IF (LSAME(UPLO,'U')) THEN
 | |
| *
 | |
| *        Form  A  when A is stored in the upper triangle.
 | |
| *
 | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | |
|               DO 20 J = 1,N
 | |
|                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
 | |
|                       TEMP1 = ALPHA*DCONJG(Y(J))
 | |
|                       TEMP2 = DCONJG(ALPHA*X(J))
 | |
|                       DO 10 I = 1,J - 1
 | |
|                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
 | |
|    10                 CONTINUE
 | |
|                       A(J,J) = DBLE(A(J,J)) +
 | |
|      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
 | |
|                   ELSE
 | |
|                       A(J,J) = DBLE(A(J,J))
 | |
|                   END IF
 | |
|    20         CONTINUE
 | |
|           ELSE
 | |
|               DO 40 J = 1,N
 | |
|                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
 | |
|                       TEMP1 = ALPHA*DCONJG(Y(JY))
 | |
|                       TEMP2 = DCONJG(ALPHA*X(JX))
 | |
|                       IX = KX
 | |
|                       IY = KY
 | |
|                       DO 30 I = 1,J - 1
 | |
|                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
 | |
|                           IX = IX + INCX
 | |
|                           IY = IY + INCY
 | |
|    30                 CONTINUE
 | |
|                       A(J,J) = DBLE(A(J,J)) +
 | |
|      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
 | |
|                   ELSE
 | |
|                       A(J,J) = DBLE(A(J,J))
 | |
|                   END IF
 | |
|                   JX = JX + INCX
 | |
|                   JY = JY + INCY
 | |
|    40         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  A  when A is stored in the lower triangle.
 | |
| *
 | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | |
|               DO 60 J = 1,N
 | |
|                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
 | |
|                       TEMP1 = ALPHA*DCONJG(Y(J))
 | |
|                       TEMP2 = DCONJG(ALPHA*X(J))
 | |
|                       A(J,J) = DBLE(A(J,J)) +
 | |
|      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
 | |
|                       DO 50 I = J + 1,N
 | |
|                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
 | |
|    50                 CONTINUE
 | |
|                   ELSE
 | |
|                       A(J,J) = DBLE(A(J,J))
 | |
|                   END IF
 | |
|    60         CONTINUE
 | |
|           ELSE
 | |
|               DO 80 J = 1,N
 | |
|                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
 | |
|                       TEMP1 = ALPHA*DCONJG(Y(JY))
 | |
|                       TEMP2 = DCONJG(ALPHA*X(JX))
 | |
|                       A(J,J) = DBLE(A(J,J)) +
 | |
|      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
 | |
|                       IX = JX
 | |
|                       IY = JY
 | |
|                       DO 70 I = J + 1,N
 | |
|                           IX = IX + INCX
 | |
|                           IY = IY + INCY
 | |
|                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
 | |
|    70                 CONTINUE
 | |
|                   ELSE
 | |
|                       A(J,J) = DBLE(A(J,J))
 | |
|                   END IF
 | |
|                   JX = JX + INCX
 | |
|                   JY = JY + INCY
 | |
|    80         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHER2 .
 | |
| *
 | |
|       END
 |