372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZHEMM
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       COMPLEX*16 ALPHA,BETA
 | |
| *       INTEGER LDA,LDB,LDC,M,N
 | |
| *       CHARACTER SIDE,UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZHEMM  performs one of the matrix-matrix operations
 | |
| *>
 | |
| *>    C := alpha*A*B + beta*C,
 | |
| *>
 | |
| *> or
 | |
| *>
 | |
| *>    C := alpha*B*A + beta*C,
 | |
| *>
 | |
| *> where alpha and beta are scalars, A is an hermitian matrix and  B and
 | |
| *> C are m by n matrices.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>           On entry,  SIDE  specifies whether  the  hermitian matrix  A
 | |
| *>           appears on the  left or right  in the  operation as follows:
 | |
| *>
 | |
| *>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
 | |
| *>
 | |
| *>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | |
| *>           triangular  part  of  the  hermitian  matrix   A  is  to  be
 | |
| *>           referenced as follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   Only the upper triangular part of the
 | |
| *>                                  hermitian matrix is to be referenced.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   Only the lower triangular part of the
 | |
| *>                                  hermitian matrix is to be referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           On entry,  M  specifies the number of rows of the matrix  C.
 | |
| *>           M  must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the number of columns of the matrix C.
 | |
| *>           N  must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX*16
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
 | |
| *>           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
 | |
| *>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
 | |
| *>           the array  A  must contain the  hermitian matrix,  such that
 | |
| *>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
 | |
| *>           part of the array  A  must contain the upper triangular part
 | |
| *>           of the  hermitian matrix and the  strictly  lower triangular
 | |
| *>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 | |
| *>           the leading  m by m  lower triangular part  of the  array  A
 | |
| *>           must  contain  the  lower triangular part  of the  hermitian
 | |
| *>           matrix and the  strictly upper triangular part of  A  is not
 | |
| *>           referenced.
 | |
| *>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
 | |
| *>           the array  A  must contain the  hermitian matrix,  such that
 | |
| *>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
 | |
| *>           part of the array  A  must contain the upper triangular part
 | |
| *>           of the  hermitian matrix and the  strictly  lower triangular
 | |
| *>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 | |
| *>           the leading  n by n  lower triangular part  of the  array  A
 | |
| *>           must  contain  the  lower triangular part  of the  hermitian
 | |
| *>           matrix and the  strictly upper triangular part of  A  is not
 | |
| *>           referenced.
 | |
| *>           Note that the imaginary parts  of the diagonal elements need
 | |
| *>           not be set, they are assumed to be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
 | |
| *>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 | |
| *>           least max( 1, n ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension ( LDB, N )
 | |
| *>           Before entry, the leading  m by n part of the array  B  must
 | |
| *>           contain the matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>           On entry, LDB specifies the first dimension of B as declared
 | |
| *>           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | |
| *>           max( 1, m ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX*16
 | |
| *>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
 | |
| *>           supplied as zero then C need not be set on input.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX*16 array, dimension ( LDC, N )
 | |
| *>           Before entry, the leading  m by n  part of the array  C must
 | |
| *>           contain the matrix  C,  except when  beta  is zero, in which
 | |
| *>           case C need not be set on entry.
 | |
| *>           On exit, the array  C  is overwritten by the  m by n updated
 | |
| *>           matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>           On entry, LDC specifies the first dimension of C as declared
 | |
| *>           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | |
| *>           max( 1, m ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16_blas_level3
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 3 Blas routine.
 | |
| *>
 | |
| *>  -- Written on 8-February-1989.
 | |
| *>     Jack Dongarra, Argonne National Laboratory.
 | |
| *>     Iain Duff, AERE Harwell.
 | |
| *>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | |
| *
 | |
| *  -- Reference BLAS level3 routine (version 3.7.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX*16 ALPHA,BETA
 | |
|       INTEGER LDA,LDB,LDC,M,N
 | |
|       CHARACTER SIDE,UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC DBLE,DCONJG,MAX
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16 TEMP1,TEMP2
 | |
|       INTEGER I,INFO,J,K,NROWA
 | |
|       LOGICAL UPPER
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16 ONE
 | |
|       PARAMETER (ONE= (1.0D+0,0.0D+0))
 | |
|       COMPLEX*16 ZERO
 | |
|       PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | |
| *     ..
 | |
| *
 | |
| *     Set NROWA as the number of rows of A.
 | |
| *
 | |
|       IF (LSAME(SIDE,'L')) THEN
 | |
|           NROWA = M
 | |
|       ELSE
 | |
|           NROWA = N
 | |
|       END IF
 | |
|       UPPER = LSAME(UPLO,'U')
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (M.LT.0) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | |
|           INFO = 7
 | |
|       ELSE IF (LDB.LT.MAX(1,M)) THEN
 | |
|           INFO = 9
 | |
|       ELSE IF (LDC.LT.MAX(1,M)) THEN
 | |
|           INFO = 12
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('ZHEMM ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
 | |
|      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF (ALPHA.EQ.ZERO) THEN
 | |
|           IF (BETA.EQ.ZERO) THEN
 | |
|               DO 20 J = 1,N
 | |
|                   DO 10 I = 1,M
 | |
|                       C(I,J) = ZERO
 | |
|    10             CONTINUE
 | |
|    20         CONTINUE
 | |
|           ELSE
 | |
|               DO 40 J = 1,N
 | |
|                   DO 30 I = 1,M
 | |
|                       C(I,J) = BETA*C(I,J)
 | |
|    30             CONTINUE
 | |
|    40         CONTINUE
 | |
|           END IF
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF (LSAME(SIDE,'L')) THEN
 | |
| *
 | |
| *        Form  C := alpha*A*B + beta*C.
 | |
| *
 | |
|           IF (UPPER) THEN
 | |
|               DO 70 J = 1,N
 | |
|                   DO 60 I = 1,M
 | |
|                       TEMP1 = ALPHA*B(I,J)
 | |
|                       TEMP2 = ZERO
 | |
|                       DO 50 K = 1,I - 1
 | |
|                           C(K,J) = C(K,J) + TEMP1*A(K,I)
 | |
|                           TEMP2 = TEMP2 + B(K,J)*DCONJG(A(K,I))
 | |
|    50                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = TEMP1*DBLE(A(I,I)) + ALPHA*TEMP2
 | |
|                       ELSE
 | |
|                           C(I,J) = BETA*C(I,J) + TEMP1*DBLE(A(I,I)) +
 | |
|      +                             ALPHA*TEMP2
 | |
|                       END IF
 | |
|    60             CONTINUE
 | |
|    70         CONTINUE
 | |
|           ELSE
 | |
|               DO 100 J = 1,N
 | |
|                   DO 90 I = M,1,-1
 | |
|                       TEMP1 = ALPHA*B(I,J)
 | |
|                       TEMP2 = ZERO
 | |
|                       DO 80 K = I + 1,M
 | |
|                           C(K,J) = C(K,J) + TEMP1*A(K,I)
 | |
|                           TEMP2 = TEMP2 + B(K,J)*DCONJG(A(K,I))
 | |
|    80                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = TEMP1*DBLE(A(I,I)) + ALPHA*TEMP2
 | |
|                       ELSE
 | |
|                           C(I,J) = BETA*C(I,J) + TEMP1*DBLE(A(I,I)) +
 | |
|      +                             ALPHA*TEMP2
 | |
|                       END IF
 | |
|    90             CONTINUE
 | |
|   100         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  C := alpha*B*A + beta*C.
 | |
| *
 | |
|           DO 170 J = 1,N
 | |
|               TEMP1 = ALPHA*DBLE(A(J,J))
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 110 I = 1,M
 | |
|                       C(I,J) = TEMP1*B(I,J)
 | |
|   110             CONTINUE
 | |
|               ELSE
 | |
|                   DO 120 I = 1,M
 | |
|                       C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
 | |
|   120             CONTINUE
 | |
|               END IF
 | |
|               DO 140 K = 1,J - 1
 | |
|                   IF (UPPER) THEN
 | |
|                       TEMP1 = ALPHA*A(K,J)
 | |
|                   ELSE
 | |
|                       TEMP1 = ALPHA*DCONJG(A(J,K))
 | |
|                   END IF
 | |
|                   DO 130 I = 1,M
 | |
|                       C(I,J) = C(I,J) + TEMP1*B(I,K)
 | |
|   130             CONTINUE
 | |
|   140         CONTINUE
 | |
|               DO 160 K = J + 1,N
 | |
|                   IF (UPPER) THEN
 | |
|                       TEMP1 = ALPHA*DCONJG(A(J,K))
 | |
|                   ELSE
 | |
|                       TEMP1 = ALPHA*A(K,J)
 | |
|                   END IF
 | |
|                   DO 150 I = 1,M
 | |
|                       C(I,J) = C(I,J) + TEMP1*B(I,K)
 | |
|   150             CONTINUE
 | |
|   160         CONTINUE
 | |
|   170     CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHEMM .
 | |
| *
 | |
|       END
 |