351 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGEMV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       COMPLEX*16 ALPHA,BETA
 | |
| *       INTEGER INCX,INCY,LDA,M,N
 | |
| *       CHARACTER TRANS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16 A(LDA,*),X(*),Y(*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGEMV  performs one of the matrix-vector operations
 | |
| *>
 | |
| *>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or
 | |
| *>
 | |
| *>    y := alpha*A**H*x + beta*y,
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are vectors and A is an
 | |
| *> m by n matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>           On entry, TRANS specifies the operation to be performed as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 | |
| *>
 | |
| *>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
 | |
| *>
 | |
| *>              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           On entry, M specifies the number of rows of the matrix A.
 | |
| *>           M must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the number of columns of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX*16
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension ( LDA, N )
 | |
| *>           Before entry, the leading m by n part of the array A must
 | |
| *>           contain the matrix of coefficients.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           max( 1, m ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 | |
| *>           and at least
 | |
| *>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 | |
| *>           Before entry, the incremented array X must contain the
 | |
| *>           vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX*16
 | |
| *>           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *>           supplied as zero then Y need not be set on input.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is COMPLEX*16 array, dimension at least
 | |
| *>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
 | |
| *>           and at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
 | |
| *>           Before entry with BETA non-zero, the incremented array Y
 | |
| *>           must contain the vector y. On exit, Y is overwritten by the
 | |
| *>           updated vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.7.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX*16 ALPHA,BETA
 | |
|       INTEGER INCX,INCY,LDA,M,N
 | |
|       CHARACTER TRANS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16 A(LDA,*),X(*),Y(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16 ONE
 | |
|       PARAMETER (ONE= (1.0D+0,0.0D+0))
 | |
|       COMPLEX*16 ZERO
 | |
|       PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16 TEMP
 | |
|       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
 | |
|       LOGICAL NOCONJ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC DCONJG,MAX
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
 | |
|      +    .NOT.LSAME(TRANS,'C')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (M.LT.0) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (LDA.LT.MAX(1,M)) THEN
 | |
|           INFO = 6
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 8
 | |
|       ELSE IF (INCY.EQ.0) THEN
 | |
|           INFO = 11
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('ZGEMV ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
 | |
|      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
|       NOCONJ = LSAME(TRANS,'T')
 | |
| *
 | |
| *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
 | |
| *     up the start points in  X  and  Y.
 | |
| *
 | |
|       IF (LSAME(TRANS,'N')) THEN
 | |
|           LENX = N
 | |
|           LENY = M
 | |
|       ELSE
 | |
|           LENX = M
 | |
|           LENY = N
 | |
|       END IF
 | |
|       IF (INCX.GT.0) THEN
 | |
|           KX = 1
 | |
|       ELSE
 | |
|           KX = 1 - (LENX-1)*INCX
 | |
|       END IF
 | |
|       IF (INCY.GT.0) THEN
 | |
|           KY = 1
 | |
|       ELSE
 | |
|           KY = 1 - (LENY-1)*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through A.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF (BETA.NE.ONE) THEN
 | |
|           IF (INCY.EQ.1) THEN
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 10 I = 1,LENY
 | |
|                       Y(I) = ZERO
 | |
|    10             CONTINUE
 | |
|               ELSE
 | |
|                   DO 20 I = 1,LENY
 | |
|                       Y(I) = BETA*Y(I)
 | |
|    20             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IY = KY
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 30 I = 1,LENY
 | |
|                       Y(IY) = ZERO
 | |
|                       IY = IY + INCY
 | |
|    30             CONTINUE
 | |
|               ELSE
 | |
|                   DO 40 I = 1,LENY
 | |
|                       Y(IY) = BETA*Y(IY)
 | |
|                       IY = IY + INCY
 | |
|    40             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
|       IF (ALPHA.EQ.ZERO) RETURN
 | |
|       IF (LSAME(TRANS,'N')) THEN
 | |
| *
 | |
| *        Form  y := alpha*A*x + y.
 | |
| *
 | |
|           JX = KX
 | |
|           IF (INCY.EQ.1) THEN
 | |
|               DO 60 J = 1,N
 | |
|                   TEMP = ALPHA*X(JX)
 | |
|                   DO 50 I = 1,M
 | |
|                       Y(I) = Y(I) + TEMP*A(I,J)
 | |
|    50             CONTINUE
 | |
|                   JX = JX + INCX
 | |
|    60         CONTINUE
 | |
|           ELSE
 | |
|               DO 80 J = 1,N
 | |
|                   TEMP = ALPHA*X(JX)
 | |
|                   IY = KY
 | |
|                   DO 70 I = 1,M
 | |
|                       Y(IY) = Y(IY) + TEMP*A(I,J)
 | |
|                       IY = IY + INCY
 | |
|    70             CONTINUE
 | |
|                   JX = JX + INCX
 | |
|    80         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y := alpha*A**T*x + y  or  y := alpha*A**H*x + y.
 | |
| *
 | |
|           JY = KY
 | |
|           IF (INCX.EQ.1) THEN
 | |
|               DO 110 J = 1,N
 | |
|                   TEMP = ZERO
 | |
|                   IF (NOCONJ) THEN
 | |
|                       DO 90 I = 1,M
 | |
|                           TEMP = TEMP + A(I,J)*X(I)
 | |
|    90                 CONTINUE
 | |
|                   ELSE
 | |
|                       DO 100 I = 1,M
 | |
|                           TEMP = TEMP + DCONJG(A(I,J))*X(I)
 | |
|   100                 CONTINUE
 | |
|                   END IF
 | |
|                   Y(JY) = Y(JY) + ALPHA*TEMP
 | |
|                   JY = JY + INCY
 | |
|   110         CONTINUE
 | |
|           ELSE
 | |
|               DO 140 J = 1,N
 | |
|                   TEMP = ZERO
 | |
|                   IX = KX
 | |
|                   IF (NOCONJ) THEN
 | |
|                       DO 120 I = 1,M
 | |
|                           TEMP = TEMP + A(I,J)*X(IX)
 | |
|                           IX = IX + INCX
 | |
|   120                 CONTINUE
 | |
|                   ELSE
 | |
|                       DO 130 I = 1,M
 | |
|                           TEMP = TEMP + DCONJG(A(I,J))*X(IX)
 | |
|                           IX = IX + INCX
 | |
|   130                 CONTINUE
 | |
|                   END IF
 | |
|                   Y(JY) = Y(JY) + ALPHA*TEMP
 | |
|                   JY = JY + INCY
 | |
|   140         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGEMV .
 | |
| *
 | |
|       END
 |