484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGEMM
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       COMPLEX*16 ALPHA,BETA
 | |
| *       INTEGER K,LDA,LDB,LDC,M,N
 | |
| *       CHARACTER TRANSA,TRANSB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGEMM  performs one of the matrix-matrix operations
 | |
| *>
 | |
| *>    C := alpha*op( A )*op( B ) + beta*C,
 | |
| *>
 | |
| *> where  op( X ) is one of
 | |
| *>
 | |
| *>    op( X ) = X   or   op( X ) = X**T   or   op( X ) = X**H,
 | |
| *>
 | |
| *> alpha and beta are scalars, and A, B and C are matrices, with op( A )
 | |
| *> an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANSA
 | |
| *> \verbatim
 | |
| *>          TRANSA is CHARACTER*1
 | |
| *>           On entry, TRANSA specifies the form of op( A ) to be used in
 | |
| *>           the matrix multiplication as follows:
 | |
| *>
 | |
| *>              TRANSA = 'N' or 'n',  op( A ) = A.
 | |
| *>
 | |
| *>              TRANSA = 'T' or 't',  op( A ) = A**T.
 | |
| *>
 | |
| *>              TRANSA = 'C' or 'c',  op( A ) = A**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSB
 | |
| *> \verbatim
 | |
| *>          TRANSB is CHARACTER*1
 | |
| *>           On entry, TRANSB specifies the form of op( B ) to be used in
 | |
| *>           the matrix multiplication as follows:
 | |
| *>
 | |
| *>              TRANSB = 'N' or 'n',  op( B ) = B.
 | |
| *>
 | |
| *>              TRANSB = 'T' or 't',  op( B ) = B**T.
 | |
| *>
 | |
| *>              TRANSB = 'C' or 'c',  op( B ) = B**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           On entry,  M  specifies  the number  of rows  of the  matrix
 | |
| *>           op( A )  and of the  matrix  C.  M  must  be at least  zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry,  N  specifies the number  of columns of the matrix
 | |
| *>           op( B ) and the number of columns of the matrix C. N must be
 | |
| *>           at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>           On entry,  K  specifies  the number of columns of the matrix
 | |
| *>           op( A ) and the number of rows of the matrix op( B ). K must
 | |
| *>           be at least  zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX*16
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
 | |
| *>           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
 | |
| *>           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
 | |
| *>           part of the array  A  must contain the matrix  A,  otherwise
 | |
| *>           the leading  k by m  part of the array  A  must contain  the
 | |
| *>           matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
 | |
| *>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 | |
| *>           least  max( 1, k ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is
 | |
| *>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
 | |
| *>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
 | |
| *>           part of the array  B  must contain the matrix  B,  otherwise
 | |
| *>           the leading  n by k  part of the array  B  must contain  the
 | |
| *>           matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>           On entry, LDB specifies the first dimension of B as declared
 | |
| *>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
 | |
| *>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
 | |
| *>           least  max( 1, n ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX*16
 | |
| *>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
 | |
| *>           supplied as zero then C need not be set on input.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX*16 array, dimension ( LDC, N )
 | |
| *>           Before entry, the leading  m by n  part of the array  C must
 | |
| *>           contain the matrix  C,  except when  beta  is zero, in which
 | |
| *>           case C need not be set on entry.
 | |
| *>           On exit, the array  C  is overwritten by the  m by n  matrix
 | |
| *>           ( alpha*op( A )*op( B ) + beta*C ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>           On entry, LDC specifies the first dimension of C as declared
 | |
| *>           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | |
| *>           max( 1, m ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16_blas_level3
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 3 Blas routine.
 | |
| *>
 | |
| *>  -- Written on 8-February-1989.
 | |
| *>     Jack Dongarra, Argonne National Laboratory.
 | |
| *>     Iain Duff, AERE Harwell.
 | |
| *>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | |
| *
 | |
| *  -- Reference BLAS level3 routine (version 3.7.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX*16 ALPHA,BETA
 | |
|       INTEGER K,LDA,LDB,LDC,M,N
 | |
|       CHARACTER TRANSA,TRANSB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC DCONJG,MAX
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16 TEMP
 | |
|       INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
 | |
|       LOGICAL CONJA,CONJB,NOTA,NOTB
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16 ONE
 | |
|       PARAMETER (ONE= (1.0D+0,0.0D+0))
 | |
|       COMPLEX*16 ZERO
 | |
|       PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | |
| *     ..
 | |
| *
 | |
| *     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
 | |
| *     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
 | |
| *     B  respectively are to be  transposed but  not conjugated  and set
 | |
| *     NROWA, NCOLA and  NROWB  as the number of rows and  columns  of  A
 | |
| *     and the number of rows of  B  respectively.
 | |
| *
 | |
|       NOTA = LSAME(TRANSA,'N')
 | |
|       NOTB = LSAME(TRANSB,'N')
 | |
|       CONJA = LSAME(TRANSA,'C')
 | |
|       CONJB = LSAME(TRANSB,'C')
 | |
|       IF (NOTA) THEN
 | |
|           NROWA = M
 | |
|           NCOLA = K
 | |
|       ELSE
 | |
|           NROWA = K
 | |
|           NCOLA = M
 | |
|       END IF
 | |
|       IF (NOTB) THEN
 | |
|           NROWB = K
 | |
|       ELSE
 | |
|           NROWB = N
 | |
|       END IF
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
 | |
|      +    (.NOT.LSAME(TRANSA,'T'))) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
 | |
|      +         (.NOT.LSAME(TRANSB,'T'))) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (M.LT.0) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (K.LT.0) THEN
 | |
|           INFO = 5
 | |
|       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | |
|           INFO = 8
 | |
|       ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
 | |
|           INFO = 10
 | |
|       ELSE IF (LDC.LT.MAX(1,M)) THEN
 | |
|           INFO = 13
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('ZGEMM ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
 | |
|      +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF (ALPHA.EQ.ZERO) THEN
 | |
|           IF (BETA.EQ.ZERO) THEN
 | |
|               DO 20 J = 1,N
 | |
|                   DO 10 I = 1,M
 | |
|                       C(I,J) = ZERO
 | |
|    10             CONTINUE
 | |
|    20         CONTINUE
 | |
|           ELSE
 | |
|               DO 40 J = 1,N
 | |
|                   DO 30 I = 1,M
 | |
|                       C(I,J) = BETA*C(I,J)
 | |
|    30             CONTINUE
 | |
|    40         CONTINUE
 | |
|           END IF
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF (NOTB) THEN
 | |
|           IF (NOTA) THEN
 | |
| *
 | |
| *           Form  C := alpha*A*B + beta*C.
 | |
| *
 | |
|               DO 90 J = 1,N
 | |
|                   IF (BETA.EQ.ZERO) THEN
 | |
|                       DO 50 I = 1,M
 | |
|                           C(I,J) = ZERO
 | |
|    50                 CONTINUE
 | |
|                   ELSE IF (BETA.NE.ONE) THEN
 | |
|                       DO 60 I = 1,M
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|    60                 CONTINUE
 | |
|                   END IF
 | |
|                   DO 80 L = 1,K
 | |
|                       TEMP = ALPHA*B(L,J)
 | |
|                       DO 70 I = 1,M
 | |
|                           C(I,J) = C(I,J) + TEMP*A(I,L)
 | |
|    70                 CONTINUE
 | |
|    80             CONTINUE
 | |
|    90         CONTINUE
 | |
|           ELSE IF (CONJA) THEN
 | |
| *
 | |
| *           Form  C := alpha*A**H*B + beta*C.
 | |
| *
 | |
|               DO 120 J = 1,N
 | |
|                   DO 110 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 100 L = 1,K
 | |
|                           TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
 | |
|   100                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   110             CONTINUE
 | |
|   120         CONTINUE
 | |
|           ELSE
 | |
| *
 | |
| *           Form  C := alpha*A**T*B + beta*C
 | |
| *
 | |
|               DO 150 J = 1,N
 | |
|                   DO 140 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 130 L = 1,K
 | |
|                           TEMP = TEMP + A(L,I)*B(L,J)
 | |
|   130                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   140             CONTINUE
 | |
|   150         CONTINUE
 | |
|           END IF
 | |
|       ELSE IF (NOTA) THEN
 | |
|           IF (CONJB) THEN
 | |
| *
 | |
| *           Form  C := alpha*A*B**H + beta*C.
 | |
| *
 | |
|               DO 200 J = 1,N
 | |
|                   IF (BETA.EQ.ZERO) THEN
 | |
|                       DO 160 I = 1,M
 | |
|                           C(I,J) = ZERO
 | |
|   160                 CONTINUE
 | |
|                   ELSE IF (BETA.NE.ONE) THEN
 | |
|                       DO 170 I = 1,M
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|   170                 CONTINUE
 | |
|                   END IF
 | |
|                   DO 190 L = 1,K
 | |
|                       TEMP = ALPHA*DCONJG(B(J,L))
 | |
|                       DO 180 I = 1,M
 | |
|                           C(I,J) = C(I,J) + TEMP*A(I,L)
 | |
|   180                 CONTINUE
 | |
|   190             CONTINUE
 | |
|   200         CONTINUE
 | |
|           ELSE
 | |
| *
 | |
| *           Form  C := alpha*A*B**T + beta*C
 | |
| *
 | |
|               DO 250 J = 1,N
 | |
|                   IF (BETA.EQ.ZERO) THEN
 | |
|                       DO 210 I = 1,M
 | |
|                           C(I,J) = ZERO
 | |
|   210                 CONTINUE
 | |
|                   ELSE IF (BETA.NE.ONE) THEN
 | |
|                       DO 220 I = 1,M
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|   220                 CONTINUE
 | |
|                   END IF
 | |
|                   DO 240 L = 1,K
 | |
|                       TEMP = ALPHA*B(J,L)
 | |
|                       DO 230 I = 1,M
 | |
|                           C(I,J) = C(I,J) + TEMP*A(I,L)
 | |
|   230                 CONTINUE
 | |
|   240             CONTINUE
 | |
|   250         CONTINUE
 | |
|           END IF
 | |
|       ELSE IF (CONJA) THEN
 | |
|           IF (CONJB) THEN
 | |
| *
 | |
| *           Form  C := alpha*A**H*B**H + beta*C.
 | |
| *
 | |
|               DO 280 J = 1,N
 | |
|                   DO 270 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 260 L = 1,K
 | |
|                           TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
 | |
|   260                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   270             CONTINUE
 | |
|   280         CONTINUE
 | |
|           ELSE
 | |
| *
 | |
| *           Form  C := alpha*A**H*B**T + beta*C
 | |
| *
 | |
|               DO 310 J = 1,N
 | |
|                   DO 300 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 290 L = 1,K
 | |
|                           TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
 | |
|   290                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   300             CONTINUE
 | |
|   310         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
|           IF (CONJB) THEN
 | |
| *
 | |
| *           Form  C := alpha*A**T*B**H + beta*C
 | |
| *
 | |
|               DO 340 J = 1,N
 | |
|                   DO 330 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 320 L = 1,K
 | |
|                           TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
 | |
|   320                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   330             CONTINUE
 | |
|   340         CONTINUE
 | |
|           ELSE
 | |
| *
 | |
| *           Form  C := alpha*A**T*B**T + beta*C
 | |
| *
 | |
|               DO 370 J = 1,N
 | |
|                   DO 360 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 350 L = 1,K
 | |
|                           TEMP = TEMP + A(L,I)*B(J,L)
 | |
|   350                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   360             CONTINUE
 | |
|   370         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGEMM .
 | |
| *
 | |
|       END
 |